پاورپوینت تونل باد (Wind Tunnel)

پاورپوینت تونل باد (Wind Tunnel)

در 13 اسلاید باتوضیحات کامل و جامع وفیلم وعکس

عناوین: تاریخچه،انواع،رفتار جریان در تونل باد،روش های اندازه گیری پارامترها در تونل باد

پروژه درس "مکانیک سیالات" دوره کارشناسی عمران یا مناسب برای دانشجویان رشته مکانیک

فایل .pptx ساخته شده با PowerPoint 2013



خرید و دانلود پاورپوینت تونل باد (Wind Tunnel)


توسعه کامل سازی باد از طریق پیش بینی انرژی باد

توسعه کامل سازی باد از طریق پیش بینی انرژی باد

فایل بصورت ورد (قابل ویرایش) و در 50 صفحه می باشد.

 

همانطور که سطوح نفوذ باد از لحاظ جهانی افزایش می یابد، نیاز به پیش بینی صحیح تغییرات در تولید انرژی باد- در انواع متفاوت پیش بینی افق های زمان- برای پایداری شبکة نیرو و همچنین کارآیی تولید روز به روز مهم می شود. پیش بینی های صحیح انرژی باد، از جمله اجزاء مهم و حیاتی برای بسیاری از چالش های عملیاتی و برنامه ریزی هستند که متغیر از پیگیری بار تا برنامه ریزی انتقال و اختصاص دادن سرمایه، تا بازاریابی سطح استراژی و برنامه ریزی عملیات است. وقتی برای تصمیم گیری بکار می رود، پیش بینی های صحیح انرژی باد، هزینه های فرعی خدمات را کاهش می دهند، قابلیت اعتبار شبکه از طریق برنامه ریزی مؤثرتر افزایش می یابد و اپراتورهای پروژه و شرکت های برق می توانند تصمیمات استراژی مهمی بگیرند که باعث افزایش کارآیی می گردد.



خرید و دانلود توسعه کامل سازی باد از طریق پیش بینی انرژی باد


معرفی و بررسی ساختار الکتریکی مکانیکی انواع توربین های بادی و بررسی سیستم های مبدل باد به انرژی الکتریکی (158 صفحه فایل ورد)

معرفی  و بررسی ساختار الکتریکی مکانیکی انواع توربین های بادی و بررسی سیستم های مبدل باد به انرژی الکتریکی (158 صفحه فایل ورد)

 

 

 

 

 

 

 

 

 

مقدمه

استفاده از منابع انرژی فسیلی و هسته ای، مستلزم هزینه زیاد و افزایش آلودگی محیط زیست و عوارض مخرب ناشی از آن است، از این رو با بروز پدیده بحران انرژی در دنیا و از طرف دیگر پیشرفت تکنولوژی تبدیل انرژی باد، به انرژی الکتریکی که به کاهش قیمت آنها منجر شده، استفاده از انرژی باد اجتناب ناپذیر شده است. سیستم های مبدل انرژی باد، به انرژی الکتریکی از سال 1975 به شکل تجاری و در سطح وسیع در دنیا مورد استفاده قرار گرفته اند. هم اکنون با پیشرفت تکنولوژی میکروکامپیوترها و نیمه هادیهای قدرت امکان استفاده از سیستم کنترلی مدرن و در نتیجه تولید قدرت الکتریکی با کیفیت بالا از نیروی باد ایجاد شده است. تجربه نصب و راه اندازی نیروگاههای بادی در کشورهای صنعتی، به خصوص آمریکا و دانمارک نشان داده است که هزینه این سیستم ها قابل مقایسه با هزینه روش های سنتی و متداول تولید انرژی الکتریکی می باشد.

تامین انرژی الکتریکی برای بارهای شبکه با کیفیت بالا و تولید وقفه نیروی برق هدف اصلی یک سیستم قدرت می باشد. برای بالا بردن کیفیت انرژی الکتریکی نیاز است. کمیت های مختلف سیستم قدرت مانند راه اندازی از مدار خارج نمودن، بهره برداری در شرایط توان ثابت و…. کنترل شود. با توجه به ماهیت تغییرات سرعت باد در زمان های مختلف ایجاد شرایط کنترل برای سیستم های قدرت شامل مبدل های انرژی باد به الکتریکی حائز اهمیت می گردد. اجزاء مختلف یک سیستم قدرت بادی شامل: توربین بادی، ژنراتور، کنترل کننده زاویه گام پره و سیستم تحریک می باشد. که هر یک از این اجزاء انواع مختلف داشته و در مدل های مختلف براساس نیاز ساخته می شوند. لذا با توجه به موقعیت جغرافیایی ایران و اهمیت انرژی‌های تجدیدپذیر به این موضوع پرداخته می شود.

باد رایگان است بشر از عهد باستان این نکته را به خوبی دریافته است و آسیاب بادی را ساخته است تا آب چاهها را بیرون بکشد و غلات را آرد کند. امروزه آسیابهای بادی دیگر منسوخ شده اند و جای خود را به مولدهای بادی داده اند که الکتریسته تولید می کنند. بهترین جا برای تاسیس مولدهای بادی سواحل دریا و تپه ها هستند. در این نقاط باد شدیدتر و منظم تر از نقاط دیگر می‌وزد. (برای تولید الکتریسته سرعت باد باید به طور متوسط 5 متر بر ثانیه، یعنی 18 کیلومتر در ساعت باشد.) اما باد این عیب بزرگ را دارد که فقط بعضی روزها و بعضی ساعات می وزد. اگر فقط به انرژی باد اتکا کنیم، به سرعت دچار کمبود الکتریسته
می شویم. پس راه حل چیست؟ راه حل این است که با استفاده از باتریها الکتریسته ای را که در ساعات بادخیز تولید شده است، ذخیره کنیم. راه دوم این است که مولد بادی را با موتوری که با سوخت کار می کند همراه سازیم. و در واقع یک گروه الکترون بوجود می آوریم. به این ترتیب می توانیم وقتی که باد نیست از الکتریسته ای که ماشین دوم تولید می کند استفاده کنیم. در حال حاضر در بسیاری از کشورهای در حال توسعه یا نقاط دور افتاده ای که برق رسانی به آنها ممکن نیست ازجمله در آرژانتین، استرالیا، آفریقای جنوبی … موادهای بادی می توانند نیاز یک مزرعه، چند خانه یا روستا را به برق تامین کنند. در اوایل قرن 14 میلادی بهره برداری گسترده از آسیابهای بادی در اروپا رایج گردید. اروپائیان بعدها روتور آسیابها را به بالای برجی انتقال داده اند که از چندین طبقه تشکیل می شود. نکته حائز اهمیت درباره آسیابهای مذکور آنست که پره ها بطور دستی در جهت باد قرار داده می شوند و این امر به کمک اهرم بزرگی در پشت آسیاب صورت می گرفت. بهینه سازی انرژی خروجی و حفاظت آسیاب در برابر آسیب دیدگی ناشی از بادهای شدید با جمع کردن پره های آن صورت می گرفت. نخستین مولدهای بزرگ به منظور تولید الکتریسته سال در اوهایو توسط چارلز براش ساخته شد. در سال 1888 ابداع انواع مولدهای بادی در مقیاس وسیع در 1930 در روسیه با ساخت ژنراتور بادی 100 کیلو واتی آغاز شد. طراحی روتورهای پیشرفته با محور عمودی در فرانسه توسط داریوس در دهه 1920 آغاز شد. از میان طرحهای پیشنهادی داریوس مهمترین طرح، روتوری است با پره های ایرفویل و انحنا دار که از بالا و پایین به یک محور عمودی متصل می شوند. در این زمینه، ابداعات دیگری صورت نگرفت و این طرح در سالهای اخیر به نام توربین داریوس مورد توجه قرار گرفته است. توسعه صنعت توربین های بادی، بسیار سریع بوده و در حال پیشرفت است. از ابتدای دهه 1980 تاکنون ظرفیت متوسط توربین بادی از 15 کیلو وات تا 8 مگا وات ارتقاء یافته است. مجموع ظرفیت نصب شده توربین های بادی در جهان به بیش از 25000 مگا وات بالغ می گردد. بنا بر محاسبات انجام شده، از باد در جهان
می توان 105-Ej (هر Ej ژول) برق گرفت و آنچه در عمل بدست می آید. 110Ej است و پیش بینی شده است تا 2020 میلادی 10 درصد از برق کل جهان از انرژی باد تولید خواهد شد. این صنعت همچنین باعث ایجاد 7/1 میلیون شغل می شود.

2-1- تاریخچه انرژی باد در جهان

انرژی باد از انواع قدیمی انرژی است که از بدو پیدایش کره زمین در آن وجود داشته و با پیشرفت جوامع انسانی مورد استفاده قرار گرفته است. کهن ترین دستگاههای مبدل باد در خاورمیانه، برای تهویه منازل بکار رفت که هنوز هم در بعضی شهرهای کویری ایران نظیر یزد بنام بادگیر از آن استفاده می شود. اولین توربین های بادی یا مبدل های انرژی باد به انرژی جنبشی در ایران شکل گرفت و کمی بعد در عصر حمورابی پادشاه بابل در عراق نیز گسترش یافت. نمونه های اولیه این توربین ها از محور عمودی استفاده
می کردند و دارای 4 پره بودند.

استفاده اصلی این توربین ها در آرد کردن غلات بود در 3 قرن قبل از میلاد، مصریها نمونه ای از توربین با محور افقی و 4 پره را ابداع کردند و بوسیله آن، هوای فشرده جهت ساختن ارگ در مراسم مذهبی را تامین کردند. آسیاب بادی در قرون وسطی در ایتالیا، پرتغال و اسپانیلا ظاهر شد و کمی بعد در انگلستان، هلند و آلمان نیز بکار برده شد. این ماشین ها می خواستند آب را به ارتفاع 5 متر پمپ نمایند. حتی از آن برای استخراج روغن از دانه های روغنی نیز استفاده کردند و بعدا انرژی باد علاوه بر خشکی در دریا نیز برای پیشبرد کشتی ها استفاده شد.

  3-1- تلاش برای تسخیر دریا

در اروپا مولدهای بادی بیشتر برای تولید الکتریسته «پاک» که در شبکه های سراسری تزریق می شود مورد استفاده قرار می گیرند. تاسیس مولدهای بادی در خشکی گاهی سبب اعتراض هایی می شود (حمایت از پرندگان و محیط زیست) برای اجتناب از این گونه دردسرها، بهتر است که پیش از نصب مولد های بادی مطالعات لازم را انجام دهیم.

همچنین بایستی موقعیت نصب مولدهای بادی، در معرض راه پرندگان مهاجر قرار نگیرد. حال که نصب این مولدها در خشکی مشکلاتی دارد، پژوهشگران متوجه دریاها شدند. مثلا کشور دانمارک با نصب مولدهای بسیار عظیم در مناطق کم عمق سواحل خود نمونه بسیاری خوبی را ارائه داده است (دکل این مولدهای بادی 90 متر و طول متغیرهایش 40متر است.) آلمان، بلژیک، ایرلند هم به پیروی از دانمارک قصد دارند که با ایجاد پارک های بزرگ و نصب ژنراتورهای بادی در آنها به اندازه نیروگاه های معمولی الکتریسته تولید کنند. امروزه مولدهای بادی را در مناطق کم عمق دریاها کار می گذارند.

4-1- وضعیت کنونی بهره برداری از انرژی باد در جهان

نیروگاههای بادی در سراسر جهان به سرعت در حال گسترش می باشند. به طوریکه انرژی باد در میان دیگر منابع و گزینه های انرژی عنوان سریع الرشدترین صنعت را به خود اختصاص داده اند. نرخ رشد این صنعت در سال 2001 میلادی سالانه 35 درصد و در سال 2002 میلادی سالانه 28 درصد گزارش شده است. در پایان سال 2002 میلادی کل ظرفیت نصب شده جهان به 22400 مگاوات رسیده که در این میان آلمان، اسپانیا، آمریکا، دانمارک و هند سهم بیشتری دارند. تا پایان 2002 میلادی این 5 کشور روی هم 26000 مگا وات یعنی 84 درصد از ظرفیت نصب شده در جهان را در اختیار داشته اند.

کل سرمایه در گردش صنعت انرژی باد در سال 2002 میلادی 7 میلیارد یورو بوده است. هر کیلو وات برق 1000 دلار هزینه دارد که 750 دلار آن به هزینه تجهیزات و مابقی به هزینه های آماده کردن سایت، نصب، راه اندازی و نگهداری مربوط می شود. در چند سال اخیر با بزرگ شدن سایز، توربین های تجاری، قیمت سرمایه گذاری آنها کاهش یافته است. صنعت انرژی باد منافع اقتصادی و اجتماعی مختلفی دارد که مهمترین آنها عبارتند از:

1-4-1 نداشتن هزینه اجتماعی:

این هزینه ها در تمام گزینه های متعارف انرژی (مانند منابع فسیلی) وجود دارند، اما با وجود هزینه های قابل توجه در بررسی های اقتصادی لحاظ نمی شود. انجمن انرژی باد در جهان (W.W.E.A) هزینه ها را به کوه یخی تشبیه کرده است. که حجم عظیم آن زیر آب است! کاهش اتکا به منابع انرژی وارداتی: در کشورهایی مثل ایران که می توان به این موضوع از جنبه افزایش صادرات نفت نگاه کرد.

 2-4-1 اثرات زیست محیطی:

در جوامع بشری توسعه با بکار گیری انرژی بیشتر، میسر می گردد و بدین ترتیب انسان خصوصیات فیزیکی، شیمیایی، بیولوژیکی اجتماعی و سنتی محیط زیست و منطقه ای نقش مهمی را به عهده دارد و کسب اطلاع از میزان اثر بخشی انواع مختلف انرژیهای مورد استفاده بر سلامت محیط زیست و موجودات زنده، وضع مقررات و استانداردهای زیست محیطی جهت کاهش آثار زیانبار همچنین استفاده از تکنولوژی و فن آوری مناسب جهت کنترل آلودگی و از همه بهتر جایگزینی انرژی تجدید شوند و پاکیزه به جای انرژی های آلاینده و تجدید ناشونده شاید بتوان آینده ای پاک را برای انسانها به ارمغان آورد.

با پیدایش نوآوریهایی در زمینه تولید انرژی مناسب برای هر کار خاص می توان مانع از ضایعات زیست محیطی و آلودگی هوا و … شد. احتراق سوختهای فسیلی موجب ورود حجم عظیمی از اکسیدهای سولفور، نیتروژن، مونوکسیدکربن و دی اکسید کربن در هوا می شود. میزان انتشار آلاینده ها فوق به ترتیب به نوع سوخت و همچنین مکانیزم های بکار گرفته شده در کنترل آلودگی بستگی دارد. آلودگی هوا می تواند به شکل مه- دود، باران اسیدی و ذرات معلق پدیدار گردد. واکنش های هیدروکربن ها و اکسیدهای نیتروژن در حضور تشعشعات فرابنفش موجب تولید ترکیبات سمی می گردد که در نهایت سلامتی و حیات انسان، جانوران و به طور کلی اکوسیستم را در معرض خطر قرار خواهد داد.

3-4-1- اثرات گلخانه ای

از بعد دیگر سوختهای فسیلی موجب بالا رفتن درجه حرارت اتمسفر و افزایش میزان در دراز مدت شاهد افزایش درجه حرارت کره زمین، ذوب یخهای قطبی، بالا آمدن سطح آبها، به زیر آب رفتن مناطق ساحلی خواهیم بود. چنانچه گفته شد در دهه های اخیر همگام با صنعتی شدن جوامع پیشرفت های سریع تکنولوژی به علت استفاده بیش از حد از منابع انرژی تجدید ناپذیر (سوختهای فسیلی)، بشر به فکر دستیابی به منابع بهتر و مطلوبتر انرژی افتاده است. در این بخش ما به انرژی تجدید پذیر باد می پردازیم.

5-1 اهمیت و لزوم بکارگیری انرژی باد از بعد اقتصادی

بازارانرژی یک بازار رقابتی است که در آن تولید برق در نیروگاههای بادی در مقایسه با نیروگاه های سوختهای فسیلی برترهای نوینی را پیش روی کاربران قرار داده است. از برتریهای نیروگاه بادی اینست که در طول مدت زمان، عمر خود، سالهای زیادی را بدون نیاز به هزینه سوخت، تولید خواهد کرد. در حالیکه هزینه دیگر منابع تولید انرژی در طول این سالها افزایش خواهند یافت. فعالیت های گسترده بسیاری از کشورهای جهان برای تولید الکتریسته از انرژی باد، سرمشقی برای دیگر کشورهایی است که در این زمینه راه درازی را در پیش دارند. بسیاری از مناطق اقتصادی در حال رشد در منطقه آسیا واقع شده اند. و اقتصاد رو به رشد کشورهای آسیایی از جمله ایران باعث شده تا این کشورها بیش از پیش به تولید الکتریسته احساس نیاز کرده و اقدام به تولید الکتریسته از منابع غیر فسیلی کند. افزون بر این موارد؛ نبود شبکه برق سراسری در بسیاری از بخش های روستایی نیز مهر تاییدی بر سیستم های تولید انرژی زده است. پس در خصوص دورنمای آینده اقتصادی استفاده از انرژی باد در ایران می بایست گفت استفاده از این انرژی موجب صرفه جویی فرآورده های نفتی به عنوان سوخت می شود. صرفه جویی حاصل در درجه اول موجب حفظ فرآورده های نفتی گشته که امکان صادرات و مهم تر اینکه تبدیل آن به مشتقات بسیار زیاد پتروشیمی با ارزش افزوده بالا را فراهم می سازد. در درجه دوم تولید الکتریسیته از این انرزی فاقد هر گونه آلودگی زیست محیطی بوده که همین عامل کمک شایانی به حفظ طبیعت سالم محیط زیست بشری کرده و در نتیجه مسیر برای نیل به توسعه پایدار اقتصادی اجتماعی فراهم می گردد. گسترش نیروگاه های بادی در راستای کاهش بهای تمام شده برق تولیدی افزایش چشم گیری نشان می دهد. به گونه ای که بهای هر کیلووات ساعت برق تولیدی از 40 سنت در سال 1990 به حدود 6 سنت در سال 2002 رسیده است. عدم مصرف سوخت، هزینه کم راهبری، تعمیر و نگهداری و آلوده نکردن محیط زیست از مزایای نیروگاه های بادی است. لازم به ذکر است به طور متوسط برای هر کیلووات ساعت برق تولیدی نیروگاه بادی حدودا 28/0 متر مکعب گاز طبیعی با آهنگ جهانی 4 سنت بر متر مکعب صرفه جویی می شود.

توجه: در متن فایل ورد چند تا عکس ها حذف شده است ولی بیش از 90 درصد تصاویر پروژه در متن آورده شده است.

فصل اول

مقدمه

فصل دوم

استفاده از انرژی باد

فصل سوم

معرفی انواع توربین های بادی- ساختار الکتریکی مکانیکی

فصل چهارم

ژنراتور نیروگاه بادی

فصل پنجم

بررسی سیستم های مبدل باد به انرژی الکتریکی

فصل ششم

سیستم آسنکرون

فصل هفتم

مبدلهای الکتریکی

 

 



خرید و دانلود معرفی  و بررسی ساختار الکتریکی مکانیکی انواع توربین های بادی و بررسی سیستم های مبدل باد به انرژی الکتریکی (158 صفحه فایل ورد)


تحقیق در مورد پیش بینی سرعت و جهت بادهای فرساینده در ایران

تحقیق در مورد پیش بینی سرعت و جهت بادهای فرساینده در ایران

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:22

 

  

 فهرست مطالب

 

 

 

پیش بینی سرعت و جهت بادهای فرساینده در ایران

 

مقدمه

 

مواد و روشها

 

نتایج و بحث

 

مطالعه حساسیت خاک سطحی  اراضی منطقه رودشت اصفهان به فرسایش بادی

 

روشهای اندازه گیری زبری سطح خاک (Soil surface roughness )  و کاربرد آن در فرسایش بادی

 

کمی نمودن رسوبات فریاشی یافته بادی در منطقه شرق اصفهان

 

تعیین شار سایش و انتشار ذرات خاک با استفاده از خصوصیات خاک و شبیه سازی سرعت و جهت باد

 

 

 

 

 

 

مقدمه

فرسایش  بادی یک معضل جدی در بیشتر مناطق خشک و نیمه خشک دنیا و ایران است . توانائی پیش بینی دقیق فرسایش بادی خاک برای بسیاری منظورها ، از جمله برنامه های حفاظتی ، منابع طبیعی ، و کاهش آلودگی هوا ناشی از طوفان ضروری است ( 3 ) .  از آنجایی که نیروی باد در طول سال ، ماه وحتی روز تا حد زیادی تغییر می نماید ، و همچنین قدرت فرسایندگی باد بستگی به توان سوم سرعت باد دارد . به منشور پیش بینی و کنترل فرسایش بادی در هر منطقه توزیع سرعت باد حائز اهمیت میباشد . همچنین علاوه برسرعت باد ، دانستن چگونگی تغییرات جهت باد در منطقه نیز امری ضروری است . زیرا نسبت جهت باد به جهت اضلاع زمین ، بادشکن ها ، ردیف کاشت گیاهان ، و شخم زمین ، نقش مهمی را در پیش بینی مقدار و جهت فرسایش بادی ایفا می کند ( 4) . مدل های مختلفی برای نشان دادن توزیع سرعت باد استفاده شده است . بی شک توزیع ویبل یکی از گسترده ترین توزیع هایی است که تا بحال برای نشان  دادن پراکندگی سرعت باد مورد استفاده قرار گرفته است ( 5 ) . اهداف این پژوهش عبارت بودند از : 1 ) شبیه سازی ساعتی سرعت و جهت باد به روش استوکاستیک با استفاده از توزیع ویبل ، به منظور استفاده در مدل WEPS  ، برای پیش بینی فرسایش بادی در شهرهای مختلف ایران ، 2) آزمون اعتبار سنجی توزیع ویبل و مدل کامپیوتری windpred  ، در پیش بینی ساعتی سرعت و  جهت باد ، . 3) ترسیم نقشه های سرعت و جهت بادهای فرساینده در ایران .

 

مواد و روشها

ابتدا 38  شهر که دارای حداقل 10 سال آمار ساعتی سرعت و جهت باد بودند ، انتخاب گردیدند . در مرحله بعد تعداد سال آماری هر شهری به دو دوره برابر تقسیم گردید ، بطوریکه از دوره اول برای شبیه سازی و از دوره دوم برای آزمون اعتبار سنجی مدل ( با استفاده از معنی دار بودن  و نبودن ضرائب همبستگی ) استفاده شد . سپس با استفاده از توزیع ویبل ، شبیه سازی سرعت و جه باد بصورت ساعتی توسط برنامه Windpred  ( 2 و 1 ) انجام گرفت . تابع توزیع تجمعی ویبل F (U)  به صورت زیر میباشد :

(1)                                                            [-(u/c)k]F(u)=1-exp

که در این معادله u  سرعت باد ( متر بر ثانیه )  ، c، پارامتر مقیاس ( با واحد سرعت ) ، و k  پارامتر شکل ( بدون واحد ) ، میباشند ( 6 ) . در هرمرحله بعد ، دوره های باد آرام حذف و فراوانی باد در هر گروه سرعتی نرمالیزه گردیدند . بنابراین :

(2)                                    [-(u/c)k]= 1-exp [ (F(u)-F0 ) / (1-F0)] F1(u)  =

که در آن F1(u)  توزیع تجمعی در حالتی است که دوره های باد آرام حذف شده است ، و F0 فراوانی دوره های باد آرام میباشد . پارامترهای k, c  به روش حداقل مربعات و بکارگیری تابع توزیع تجمعی محاسبه شدند ( معادله 2 ) .

با استفاده از پارامترهای توزیع ویبل (c,k)  فراوانی سرعت باد در هر ماه و در سال بصورت تجمعی و نرمال شده بدست آمد . به منظور شبیه سازی جهت باد ، اعداد بین صفر و یک بصورت تصادفی انتخاب ، و با جدول توزیع تجمعی جهت باد مقایسه گردیدند . برای شبیه سازی سرعت باد براساس جهت باد تعیین شده ، پارامترهای c،k  توزیع ویبل برای آن جهت خاص از جدول های تعیین شده قبلی ، بدست امد و از معادله زیر استفاده گردید :

U= c{-1n[1-(F(u)-F0]/(1-F0)}1/k

با استفاده از روش انتخاب عدد تصادفی ، یک عدد بین صفر و یک انتخاب گردید . سپس این مقدار را به جای F(u)   قرارداده و در نهایت سرعت باد شبیه سازی شده محاسبه گردید . به دلیل اینکه هدف شبیه سازی سرعت باد بصورت ساعتی بود ، با استفاده از رابطه زیر سرعت باد بصورت ساعتی شبیه سازی شد :

U(1)= Urep+0.5(umax-Umin) Cos[2p(24-hrmax+I)/24]

که در آن ، hrmax  ساعتی از روز که سرعت باد حداکثر است ،  I   شاخص ساعت روز ، Umax  سرعت باد حداکثر ، Umin  سرعت باد حداقل ، و Urep  سرعت شبیه سازی شده حاصل از معادله( 3 ) میباشد .

در مرحله  بعد ، با استفاده از نتایج شبیه سازی شده ، نقشه درصد سرعت بادهای فرساینده و جهت غالب آنها ، و همچنین نقشه حداکثر سرعت باد و جهت غالب باد در هر ایستگاه با استفاده از نرم افزارهای SURFER  و CorelDRAW10  برای ماه های مختلف سال تهیه گردید . بعنوان نمونه نقشه درصد سرعت بادهای فرساینده و جهت غال آنها ، برای ماه جولای نشان داده شده است ( شکل 1 ) لازم به ذکر است که در این نقشه ها ، شهرها به صورت دایره ، اسم شهرها واطلاعات مربوط به سرعت باد شهرها در داخل دایره و جهت باد غالب آنها هم بر روی دایره بشکل حروف و بصورت علامت پیکان ، نمایش داده شده است . همچنین برای نشان دادن سرعت حداکثر و درصد سرعت بادهای فرساینده ، از رنگهای مختلفی نیز استفاده گردید .

 



خرید و دانلود تحقیق در مورد پیش بینی سرعت و جهت بادهای فرساینده در ایران


کلیه ی داده های ماهانه هواشناسی شهر سقز از سال 1374 تا آخر سال 1391 بصورت اکسل

کلیه ی داده های ماهانه هواشناسی شهر سقز از سال 1374 تا  آخر سال 1391 بصورت اکسل

شامل داده های ماهانه بارش، میانگین،حداقل و حداکثر دما، فشار،طوبت،روزهای یخبندان،تبخیر،باد و ....

این مجموعه بصورت یک قایل اکسل در اختیارتان می باشد.



خرید و دانلود کلیه ی داده های ماهانه هواشناسی شهر سقز از سال 1374 تا  آخر سال 1391 بصورت اکسل