لینک پرداخت و دانلود *پایین مطلب*فرمت فایل:Word (قابل ویرایش و آماده پرینت)تعداد صفحه:93
فهرست:
حلقه و ایده آل :
تعریف
نکته
گزار
برهان
قضیه
بسته ضربی
رادیکال یک ایده آل
رادیکال جی کوبسن
مدول و زیر مدول
تعریف زیر مدول های خارج قسمتی
مدول و حلقه نوتری و آرتینی
شرط مینیمال
ولی قضایای بالا مقدمه ای برای ارائه قضیه اساسی زیر بود
- مدول ضربی
مدول بدون تاب
برهان زیر مدول بودن T ( M )
خواص اساسی از – M رادیکال ها
رادیکال ها در مدول های خاص
نتیجه
فصل دوم
2-1- حلقه و ایده آل :
تعریف : حلقه مجموعه ای است مانند R همراه با دو عمل دوتایی که معمولا با جمع و ضرب نشان می دهند به طوری که :
1 . ( R , + ) گروه آبلی است .
2 . به ازای هر R α , b , c (α b ) c = α ( b c ) . ( شرکت پذیر )
3 . . (α + b ) c = α c + b c , α ( b + c ) = α b + α c ( پخشی )
هرگاه علاوه بر این :
4 . اگر به ازای هر R α , b α b = b α گوییم حلقه تعویض پذیر است .
5 . هرگاه R شامل عنصری مانند 1 R باشد بطوری که : به ازای هر R α 1R . α = α . 1R = α آنگاه گوییم R یک حلقه تعویض پذیر یک دار است .
نکته : عنصر همانی جمعی حلقه عنصر صفر نام دارد و با 0 نمایش داده می شود .
تعریف : فرض کنید S , R حلقه و R → S : f یک نگاشت باشد در این صورت f را همومورفیسم ( یا همومورفیسم حلقه ای ) گوییم اگر و فقط اگر شرط های زیر برقرار باشند:
1 . به ازای هر R α . b f (α + b ) = f (α ) + f ( b ) ؛
2 . به ازای هر R α , b f (α b ) = f (α ) f ( b ) ؛
3 . f ( 1 R ) = 1 s
نکته : اگر f : A → B , g : B → C همومورفیسم حلقه ای باشند آنگاه ترکیبشان نیز همومورفیسم حلقه ای است .
تعریف : فرض کنید R یک حلقه تعویض پذیر باشد زیر مجموعه I از R را یک ایده آل می نامیم اگر شرط های زیر برقرار باشند :
1 . I زیر گروه جمعی R باشد .
2 . R r ، I i نتیجه بدهد R ir ؛
تعریف : فرض کنید R یک حلقه تعویض پذیر باشد . مقسوم علیه صفر R عضوی مانند R r است که به ازای آن عضوی مانند R y با شرط 0R ≠ r y .
تعریف : فرض کنید R حلقه تعویض پذیر باشد . در این صورت R را یک دامنه صحیح می گوییم اگر
1 . R حلقه صفر نباشد یعنی 0R ≠ 1R و
2 . 0R تنها مقسوم علیه صفر R باشد .
یا به عبارت دیگر اگر R α , b α b = 0 R آنگاه α = 0 R یا b = 0s .
تعریف زوج مرتب:
هر دستة متشکل از دو عنصر با ترتیب معین را یک زوج مرتب گویند. مانند زوچ مرتب (x,y) که x را مؤلفه اول مختص اول یا متغیر آزاد گویند و y را مؤلفه دوم مختص دوم متغیر وابسته( تابع) یا تصویر گویند و نمایش هندسی آن نقطهای در صفحة مختصات قائم است که طول آن برابر x و عرض آن برابر y است.
تساوی بین دو زوج مرتب:
دو زوج مرتب با یکدیگر مساویاند اگر دو نقطه اگر مؤلفههای نظیربهنظیر آنها با هم برابر باشند یعنی:
مثال: از تساوی زیر مقادیر x,y را بیابید:
تعریف حاصلضرب دکارتی دو مجموعه :
حاصلضرب دکارتی در مجموعه B,A که با نماد نشان داده میشود عبارت است از مجموعه تمام زوج مرتبههائی که مؤلفة اول آنها از A و مؤلفه دوم آنها از B باشد یعنی:
مثال: حاصلضرب دکارتی درهر یک از مثالهای زیر را بصورت مجموعهای از زوجهای مرتب بنویسید و نمودار آن را در دستگاه محورهای مختصات قائم رسم نمائید:
(1
(2
نمودار حاصلضرب دکارتی مجموعههای داده شدة زیر را در دستگاه محورهای مختصات قائم رسم کنید.
ویژگیهای حاصلضرب دکارتی مجموعهها :
فضای دوبعدی ( صفحه) 3) , ,
4) , ,
5) مثال:
تضاد زوجهای مرتب:
تعریف ریاضی رابطه:
اگر B,A دو مجموعه دلخواه باشند هر زیرمجموعه از حاصلضرب دکارتی را یک رابطه از A در B گویند اگر f یک زیرمجموعه از باشد گویند. F یک رابطه از A در B است به عبارت دیگر رابطه Fمجموعه تمام زوج مرتبهای است که مؤلفههای اول و دوم آن با شرایطی خاص( قانون یا ضابطة خاص) به یکدیگر مربوط میشوند. به بیان دیگر رابطه f زیرمجموعهای از است که با ضابطه یا قانون خود مختص اول زوجهای مرتب را به مختص دوم آنها پیوند میدهد مانند رابطه پدر و فرزندی رابطه مالک و مستأجری رابطه عبد و مولا رابطه اعداد با مجذور آنها.
فایل ورد 20 ص
جزوه ریاضیات گسسته به صورت کامل با یکبار خواندن این جزوه نمره قابل قبولی کسب خواهید کرد
فصل اول : حساب گزاره ها
تعریف : در یک استدلال هر یک از عبارات استفاده شده برای رسیدن به نتیجه را فرض یا مقدم و عبارت آخر را نتیجه
یا تالی مینامیم.
یک استدلال زمانی معتبر است که اگر فرضهای آن درست باشد نتیجه نیز درست است.
و... تا آخر کتاب
زبان:ریاضی
تعدادص:56
نوع فایل:PDF
حجم فایل:694kb
16 اسلاید
تعریف
•مجموعه ای غیر تهی از راس•مجموعه ای از زوج راسها که بوسیله یال بهمدیگر متصل هستند.•انواع گراف•گراف بدون جهت Undirected graph•گراف جهت دار Directed graph•گراف چند یالیMulti-graph•گراف کاملComplete Graph•گراف ساده Simple graph