پایان نامه ریخته گیری فولاد

پایان نامه ریخته گیری فولاد

 

 

 

 

 

 

فرمت فایل:word  (قابل ویرایش)

تعداد صفحات :

فهرست مطالب :

پیش گفتار 1
بخش اول 3
مقدمه 3
عناصر آلیاژی فولادها 4
کربن 6
منگنز 7
سیلیسیم 8
کرم 8
نیکل 9
آلومینیوم 10
گوگرد 10
فسفر 11
2-1- طرز تهیه فولاد 12
کنورتر 15
کوره قوس الکتریکی 18
3-1- انواع فولاد 20
تقسیم بندی مارک های فولاد 26
4-1- روش های ریخته گری فولاد 29
ریخته گری در قالب - از بالا 29
ریخته گری در قالب – سیفونی 31
2-4-1- ریخته گری مداوم 32
انواع ایستگاه های ریخته گری مداوم 35
نمای تکنولوژیکی ایستگاه های ریخته گری ا تا 6 38
درجه ی حرارت ذوب 39
5- مشخصات گاز، اکسیژن و هوای فشرده مصرفی 44
1-5- گاز 44
2-5- اکسیژن 49
3-5- هوای فشرده 50
6- کریستالیزاتور 52
افت حرارت فولاد مذاب در کریستالیزاتور 55
1-6- ساختمان کریستالیزاتور در ایستگاه های 1تا 6 57
آب گردشی درون کریستالیزاتور 66
2-6 – اختلالات شمش در کریستالیزاتور 76
تلاطم فولاد مذاب در کریستالیزاتور 85
3-6 شبکه آب رسانی کریستالیزاتور ها 88
7- روغنکاری کریستالیزاتور و جلوگیری از اکسیده شدن فولاد مذاب 99
در ریخته گری سطح باز 106
7-2 جلوگیری از اکسیده شدن فولاد مذاب و روغنکاری کریستالیزاتور در ریخته گری زیر سطح 110
سردکننده ثانویه 116
1-9 ساختمان سردکننده ثانویه در ایستگاه 1و2 124
2-9 ساختمان سرد کننده ثانویه در ایستگاه 3 126
3-9 ساختمان سردکننده ثانویه در ایستگاه 4و5 و6 128
هدایت رولیکهای همرکز کننده سردکننده ثانویه 130
4-9 سشبکه آب رسانی سردکننده ثانویه 133
10- سرعت ریخته گری 141
سرعت ماشین در شروع ریخته گری 148
سرعت پس از توقف ماشین صنعت ریخته گری 150
سرعت ماشین پس از پایان ریخته گری 152
11- مکانیزم گیرنده – کشاننده شمش 154
1-1-11- سیستم محرکه هیدرولیکی گیرنده 155
2-1-11- سیستم محرکه الکتریکی کشاننده 168
هدایت سیستم کشاننده 169
2-11- مکانیزم گیرنده – کشاننده بالایی ایستگاههای 4 و 5 و 6 173
2 -11 سیستم محرکه هیدرولیکی گیرنده 174
هدایت سیستم گیرنده 175
طرز کار سیستم گیرنده 178
2-2-11- سیستم محرکه الکتریکی کشاننده بالایی 183
هدایت سیستم کشاننده بالایی 184
3-11-روغنکاری جعبه دنده مکانیزم گیرنده-کشاننده شمش 193
4-11- تکنولوژی کار محرکه های الکتریکی 196
مکانیزک ترمز محرکه های الکتریکی 201
12-سردکنندگی تجهیزات ماشین های ریخته گری 206
فهرست منابع 217

پیش گفتار
نیاز به بالا رفتن سطح آگاهی صنعت کاران نسبت به فرایند های تکنولوژیکی جاری در رشته صنعتی مربوطه و شناخت هر چه بیشتر امکانات، محدودیت ها و طرز بهره برداری صحیح تجهیزات مورد استفاده به اندازه ی کافی روشن می باشد. در پی این هدف، قبلا اقدام به تهیه ی جزواتی برای کارکنان تکنولوژ قسمت ریخته گری مداوم تحت عناوین « اهم مسائل تکنولوژیکی مربوط به ....» گردیده بود.
به علت لزوم تکمیل این جزوات، رفع ایرادات آن ها در حد امکان و اظهار علاقه ی همکاران به در اختیار چنین مطالبی، جزوه ی حاضر با تغییرات اساسی و یکپارچه شدن مطالب جزوات قبلی در دست تهیه قرار گرفت. فعلا بخش اول آن تقدیم می گردد و امید است که با توفیقات الهی بتوان بخش دوم آن را در آینده تهیه و در اختیار علاقه مندان گذاشت.
مجموعه مطالب تهیه شده خطاب به همکاران اپراتور و ریخته گران دست اندرکار قسمت ریخته گری مداوم فولاد بوده و می تواند مورد استفاده ی دیگر کارکنان فولاد سازی قرار گیرد.
در این جزوه سعی شده است که ضمن شناساندن فرایند های جاری در حیطه ی ریخته گری مداوم فولاد و همچنین بررسی تکنولوژیکی کلیه ی تجهیزات مربوطه و بیان روش های صحیح بهره برداری و سرویس دهی تکنولوژیکی با اهتراز از طولانی شدن کلام در محدوده ی گسترده تری به معرفی تکنولوژی ریخته گری مداوم فولاد پرداخته شود. البته باید توجه داشت که همیشه با گذشت زمان تغییراتی جزئی یا عمده در تجهیزات و تکنولوژی به کار گرفته شده در قسمت ریخته گری مداوم فولاد به منظور بهبود بخشیدن به شرایط کار صورت می گیرد. بنابراین برای حفظ صحت مطالب فنی این نوع جزوه ها باید هر از گاهی چک و اصلاحاتی در آن ها به عمل آید.
برای جمع آوری مطالب گرد آمده در این مجموعه، علاوه بر منابع ذکر شده در پایان جزوه، در محدوده ی وسیعی از تجربیات عملی و اطلاعات فنی بسیاری از همکاران به ویژه همکاران شاغل در قسمت ریخته گری مداوم استفاده شده است. به همین جهت می توان این جزوه را یک کار دست جمعی محسوت نمود. بهر حال لازم است از همکاری کلیه این افراد صمیمانه تشکر شود، که به دلیل شمار زیاد این عزیزان و امکان از قلم افتادگی، قادر به ذکر نام آن ها نمی باشم.
بخش اول
مقدمه
فولاد ها که از نظر ترکیب شیمیایی، خواص فیزیکی- مکانیکی و ساختار کریستالی بی اندازه متنوع هستند، عموما آلیاژهایی براساس عنصر آهن به عنوان عنصر پایه و عناصر آلیاژی می با شند. عمده ترین عناصر آلیاژی در فولاد ها عبارتند از کربن، سیلیسیم، کرم، نیکل و غیره. دو عنصر گوگرد و فسفر به طور ناخواسته معمولا در آلیاژهای آهن حضور داشته و اثرات منفی بر روی خواص مکانیکی به جای می گذارند. آهن خالص با وزن اتمی 56 گرم بسیار نرم بوده ( سختی برنیل برابر kg 60 /2mm) و دارای مرز روانی ( حدود 10 ) و مرز گسیختگی (2mm / kg 20) پایینی می باشد، به طوری که این خواص مکانیکی مثلا برای فولاد 3 آرام که فولادی غیر آلیاژی کم کربنی است، به ترتیب بعدی می باشد: سختی برنیل حدود 2mm / kg 137، مرز روانی حدود 2mm / kg 21 ، مرز گسیختگی حدود 2mm / kg34 .

عناصر آلیاژی فولاده
نقطه ی ذوب آهن خالص oc 1536 ( نقطه ی A روی منحنی تصویر 1 ) است. هنگام سرد کردن آهن خالص مذاب، ضمن تدریجی درجه ی حرارت با رسیدن به درجه ی حرارت فوق الذکر، حتی با سرد کردن مذاب، درجه ی حرارت ثابت مانده و تا پایان انجماد تمامی آهن مذاب، درجه ی حرارت ثابت است. در ادامه با سرد کردن فلز، درجه حرارت آن مجددا شروع به پایین آمدن می نماید.
با افزودن عناصر آلیاژی به آهن، نوع ساختار کریستالی و خواص فیزیکی- مکانیکی از جمله نقطه ی ذوب آن شدیدا تغییر می یابند. 
اصولا با افزودن عنصر یا عناصری دیگر به هر عنصر پایه، آلیاژ حاصله دیگر دارای یک نقطه ذوب یا انجماد ثابت نخواهد بود. مثلا آهن مذاب حاوی فقط 15/0% کربن در درجه ی حرارتoc1525 اولین ذرات جامد را تشکیل می دهد. اگر به سرد کردن فلز ادامه داده شود، ضمن پایین آمدن درجه حرارت آن، نسبت ذرات جامد به مذاب باقیمانده بیشتر می شود. نهایتا درجه حرارت oc 1493 فلز مذاب قبلی به انجماد کامل دست می یابد.
سیلیسیم
همه ی فولادها دارای سیلیسیم هستند. فولادهای غیر آلیاژی کربنی تا 40/0% سیلیسیم داشته، که این سیلیسیم بیشتر جهت اکسیژن زدایی ( آرام کردن فولاد مذاب ) به کار می رود. 
فولادهای حاوی بیش از 40/0% سیلیسیم را فولادهای سیلیسیمی می نامند. 
سیلیسیم اصولا مرز گسیختگی و مرز روانی فولادها را افزایش داده، اما ازدیاد طول نسبی آن ها را کاهش می دهد. در صنعت برای بهبود فولادهای ساختمانی و یا برای تهیه فولادهای فنر ( Si2 -1% وC 40/0 تا 70/0 ) از این عنصر استفاده می نمایند. فولادهای حاوی Si 14/0 در مقابل تاثیرات شیمیایی مقاوم بوده ولی چکش خوار نیستند. فولاد دینام و ترانسفورماتور دارای حدود 4% سیلیسیم و حداکثر 10/0% کربن می باشند. 
مرز گسیختگی آهن خالص با افزودن سیلیسیم به مقدار5/0% حدود 1/1برابر، به مقدار0/1%حدود 10/1 برابر و به مقدار 0/2% حدود4/1 برابر می شود.
کرم
فولادهای کرم دار حاوی 3/0 – 30% کرم هستند. با افزایش مقدار عنصر کرم در فولاد، هر دو درجه ی حرارت شروع و پایان انجماد ( که بسیار به یکدیگر نزدیک هستند ) پایین می آیند. به طوری که به ازاء 15% کرم در درجه حرارت فوق الذکر بر یکدیگر منطبق و برابر oc1400 می شوند. یعنی فولاد کرم دار با چنین را با چنین درصد کرم در درجه حرارت1400 شروع به انجماد نموده و تا پایان انجماد درجه حرارت فولاد ثابت می ماند. 
عنصر کرم مرز گسیختگی، سختی و مرز روانی فولادها را به طور قابل ملاحظه ای بالا برده و لیکن قابلیت انعطاف آن ها را کم می کند. وجود کرم0/1% فولاد را خیلی سخت کرده و برای بلبرینگ به کار رفته و تا 13% ( کربن کمتر از 5/0%) به عنوان فولاد ضد زنگ مورد استفاده قرار می گیرد.
مرز گسیختگی آهن خالص با افزودن کرم به مقدار 5/0% حدود 05/1 برابر، به مقدار0/1%حدود 1/1 برابر و به مقدار 0/2% حدود 35/1 برابر می شود.
نیکل 
فولادهای نیکلی می توانند با حدود35% نیکل داشته باشند. این عنصر استحکام و چغرمگی فولاد را بالا برده و فولاد را ضد زنگ می کند. 
فولادهای حاوی حداکثر تا 5% نیکل به عنوان فولادهای ساختمانی به کار می روند. فولادهای حاوی 25% نیکل به عنوان فولاد غیر مغناطیسی مثلا برای تهیه جعبه قطب نما و فولادهای حاوی 35% نیکل به عنوان فولاد با ثبات و بدون تغییر ( به علت انبساط طولی خیلی کم ) برای تهیه ابزار اندازه گیری مورد استفاده قرار می گیرند. فولادهای نیکلی بیشتر به عنوان سیم های مقاوم اهمیت بسزایی دارا هستند.
آلومینیوم
این فلز به عنوان یک عنصر آلیاژی به سبب پایداری فولادها در برابر اکسیده شدن و همچنین سبب دیر گدازی آن ها می شود. 
آلومینیوم به علت میل ترکیبی آن نسبت به اکسیژن ( بیشتر از Si و Mm ) به عنوان مهم ترین عنصر اکسیژن زدا ( آرام کننده ) در فولاد مذاب به کار می رود. البته آلومینیوم میل ترکیبی زیادی نیز نسبت به ازت داشته و مشکل وارد شدن ازت به فولادها را تا حدودی دفع می نماید. 
زیاد شدن مقدار آلومینیوم در فولاد مذاب ( به ویژه بیش از 550/0% )، به علت تشکیل مقدار زیاد AL2O3 سوزنی شکل (با نقطه ی ذوب oc2040 ) درون فولاد مذاب، سبب غلیظ شدن ذوب ضمن ریخته گری می شود.
گوگرد
این عنصر فولاد را شکننده کرده و دچار گسیختگی سرخ می نماید. علت گسیختگی سرخ تشکیل ترکیب SFe ( با نقطه ی ذوبoc985 ) است که در مرز دانه ها پدید آمده و هنگام شکل فلز در درجه حرارت های oc1000-800 باعث بروز ترک سرخ در مرزدانه ها می شود. 
به این جهت عنصر گوگرد در محدوده ی 00030%- 025/0 مجاز شمرده می شود. البته فولادهای اتومات تا 3/0% می توانند گوگرد داشته باشند. این گوگرد به منظور سهولت کار اتومات روی قطعات فولادی در ماشین های ابزار استفاده می شود. زیرا گوگرد سبب زود شکستن و دور ریخته شدن براده های فنری شکل حاصله از تراشکاری قطعات فولادی می گردد. 
برای جلوگیری از زیان های گوگرد، به فولاد عنصر منگنز ( حدود 20 برابر مقدار گوگرد ) می افزایند تا با تشکیل پیوند MmS ( نقطه ی ذوب oc1610 ) عنصر گوگرد را بی اثر نماید. 
فسفر
فسفر نیز عنصری مضر برای خواص مکانیکی فولادها بوده و به همین جهت معمولا حداکثر مقدار مجاز فسفر در فولادها را در محدوده ی 03/0- 05/0% تعیین می کرده اند. ( فقط در فولادهای ویژه مقدار فسفر تا 3/0% می رسد.) 
اثر زیان بار فسفر به علت میل زیاد آن به جدا شدن از فولاد به صورت ترکیبات فسفری و تجمع یافتن این ترکیبات در مرزدانه ها می باشد. هنگام جدایش ترکیبات فسفری این خطر وجود دارد که در مرزدانه های اولیه کریستالی، مناطق موضعی غنی شده از فسفر پدید آمده که سبب تغییرات بدون کنترل خواص فولاد در این محل ها به دنبال اثرات مضر فسفر، گردد.
2-1- طرز تهیه فولاد
متداول ترین کوره ها برای تهیه ی فولاد عبارتند از کنورتر، کوره قوس الکتریکی و در مراحل بعدی کوره زیمنس مارتین. آهن خام مورد نیاز این کوره ها را با روش های متفاوتی تهیه می کنند. 
روش سنتی تهیه آهن خام برای کنورتر و کوره زیمنس مارتین بدین ترتیب است که ابتدا سنگ معدن آهن را که عموما شامل اکسیدهای Fe3O4 و Fe2O3 می باشد در کوره بلند به چدن مذاب تبدیل می نمایند.
عمل کوره بلند احیا کردن سنگ معدن و تولید آهن خام و ذوب آن می باشد. کک شارژ شده در کوره بلند هر دو نقش را ایفا می نماید. یعنی به طور مستقیم و غیر مستقیم سنگ معدن آهن را احیا نموده و حرارت لازم را برای انجام این واکنش و همچنین ذوب آهن را ایجاد می کند. آهک شارژ شده در کوره بلند عمل تصفیه چدن را انجام می دهد. یعنی با ناخالصی که که اغلب دیر ذوب هستند ترکیب شده و آن ها را به روی سطح فلز مذاب برده و سر باره را تشکیل می دهد. ضمنا نقطه ی ذوب ناخالصی ها را پایین آورده و سبب ذوب شدن آن ها می شود. 



خرید و دانلود پایان نامه ریخته گیری فولاد


گزارش کارآموزی در مجتمع فولاد اهواز

گزارش کارآموزی در مجتمع فولاد اهواز

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:31

فهرست و توضیحات:

عیب های مکانیکی موتور         

نشت روغن                          

دود سیاه یا خاکستری تیره                       

آزمون فشار بخار کارتر                          

صدای یاتاقان میل لنگ                           

تجزیه روغن                            

سیستم سوخت رسانی                      

ارزیابی کیفیت سوخت                    

آزمون های سیستم سوخت رسانی            

آب                                

روغن سوزی                             

پایین بودن میزان کمپرس                         

آزمون نشت سیلندر                           

پمپ سه گوش                            

مدار برگشت سوخت                            

مدار سوخت پر فشار                     

سوخت پاشها               

پمپ سوخت پاش             

سیستم هواکش              

توربو شارژ کن            

گرفتگی لوله برگشت سوخت            

سیستم تخلیه دود               

سیستم راه اندازی موتور            

 


بسمه تعالی

برای اطلاعات از وضعیت داخل موتور از گیج روغن ( میل روغن نما ) و درجه فشار روغن ( فشار سنج ) استفاده کنید . روغن الوده را می توان بوکشید و در موارد جدی روغن را نزدیک سینی کارتر بیرون می زند . وقتی گیج روغن را نزدیک منیفولد داغ نگه دارید اگر روغن آب داشته باشد، بخار می شود . اتیلن گلیکول ( ضد یخ ) با روغن واکنش انجام می دهد و مایع قهوه ای رنگ و چسبناکی تولید می کند که روی گیج روغن مشهود است . فشار روغن به سرعت باید بالا برود و اگر یاتاقانها خوب باشند ، تحت بار نباید تغییر کند.

با اندازه گیری ولتاژباتری در هنگام موتور گردانی می توان عیوب سیستم راه اندازی را به سرعت تشخیص داد . اگر ولتاژ به اندازه 25 درصد یا بیشتر کاهش یابد باید غلظت آب اسید باتری را اندازه گیری کند و در جستجوی خانه ای از باتری باشد که اتصال کوتاه کرده است . استارت و کابلهای آن را ، بر اساس میزان جریان کشی ، وارسی کنید: اگر استارت بیش از اندازه جریان می کشد نشان دهنده مقاومت مدار است.

بسیاری از وضعیتها از قبیل پایان بودن توان موتور ، دود کردن موتور ، بد کارکردن در دور آ رام ، نرم کارنکردن و بد روشن شدن را می توان به موتور یا سوخت مربوط کرد . اگر با استفاده از سوخت پاش سالم مشکل حل نشد، آزمونهای تراکم و نشت سیلندر را ، به شرحی که در ادامه مطلب می آید انجام دهید . آزمونهایی که روی موتور انجام می شود ، از آزمونهایی که روی سیستم سوخت پاشی انجام می شود آسانترند و می توان آنها را داخل محوطه انجام د



خرید و دانلود گزارش کارآموزی در مجتمع فولاد اهواز


بهبود مقاومت به خوردگی فولاد زنگ نزن 316L مورد استفاده برای صفحات دوقطبی پیل سوختی

بهبود مقاومت به خوردگی فولاد زنگ نزن 316L مورد استفاده برای صفحات دوقطبی پیل سوختی

 

 

 

 

 بهبود مقاومت به خوردگی فولاد زنگ نزن 316L مورد استفاده برای صفحات دوقطبی پیل سوختی با غشاء مبادله کننده پروتون توسط عملیات سطحی کرومایزینگ

 

عملیات کروم دهی پودری قادر به ایجاد یک پو شش سطحی با سختی بالا و مقاومت به خوردگی روی صفحات دوقطبی فولادی برای پیل سوختی با غشاء مبادله کننده پروتون (PEMFC) است . در این پروژه تأثیر تغییر ترکیب پودر بر ساختار و مورفولوژی پوشش کرومایدی مورد مطالعه قرار گرفته است . برای این منظور نمونه هایی از جنس فولا د زنگ نزن به روش سمانتاسیون پودری در دمای 950 درجه سانتیگراد تحت عملیات کرومایزینگ قرار گرفته و رفتار نمونه های کرومایز شده توسط روشهای تفرق اشعه X و تصاویر میکروسکوپ نوری مورد بررسی قرار گرفته است. مقاومت به خوردگی فولاد زنگ نزن 316L کرومایز شده در شرایط کاری یک پیل سوختی با غشاء مبادله کننده پروتون توسط آزمایش پتانسیودینامیک مورد مطالعه قرار گرفته است . نتایج نشان می دهند که لایه های غنی از کروم زیر سطح آزاد، یک لایه سطحی پسیو تولید کرده و سطح را در مقابل خوردگی در محلول 0.5M H2SO4 در دمای 80 درجه سانتیگراد محافظت می کند.

 



خرید و دانلود بهبود مقاومت به خوردگی فولاد زنگ نزن 316L مورد استفاده برای صفحات دوقطبی پیل سوختی


تحقیق سقف کرمیت

تحقیق سقف کرمیت

لینک پرداخت و دانلود "پایین مطلب:
فرمت فایل: word (قابل ویرایش)
تعداد صفحه: 6
فهرست مطالب:

 

سقف کُرمیت

سقف تیرچه و بلوک کُرمیت

سقف پلیمری کُرمیت

 سقف کامپوزیت کُرمیت

 

قسمتی از متن:

 

در وهله اول قالب های سقف کرمیت سه قطعه بوده و برای باز کردن ، قطعات آن باید از یکدیگر جدا می شد ، با تحقیق بخش R&D این شرکت این قالب با بهینه سازی و استفاده از خاصیت تغییر شکل ارتجاعی فولاد به قالبی یکچارچه تبدیل شد. 

این قالب در بین تیرچه ها قرار گرفته و بعد از گیرش اولیه بتن قالب از زیر سقف در آورده می شود . این قالب محاسن بسیار زیادی دارد و با سرعت چیده و جمع آوری می گردد و با دقت مختصری , بارها قابل استفاده است. این قالب هم اکنون در پروژه های مختلف این شرکت مورد استفاده است.

آخرین بررسی ها و دستاوردها نشان داد که بهتر است جهت تطبیق سیستم با سیستم تیرچه بلوک و استفاده از آرماتور حرارتی یک جهته و حذف آرماتور خمشی در دال فوقانی و در نتیجه صرفه جویی اقتصادی، فاصله لب با لب تیرچه ها حداکثر 75 سانتی متر باشد. مزیت این قالب در آن است که با رعایت دیگر شرایط آیین نامه می توان آرماتور دو جهته را حذف و فقط آرماتور عمود بر تیرچه را منظور نمود.

هم اکنون این شرکت قالبهای جدید خود را به انتخاب مصرف کننده در فواصل و ارتفاع مختلف آماده عرضه نموده است. فاصله محور به محور تیرچه ها حدود 85 سانتی متر تا 95 سانتی متر و با ارتفاع 20 تا 25 سانتی متر، بسته به انتخاب خریدار و با مشاوره دفتر فنی شرکت و نوع تیرآهنهای مصرفی در سازه و طول دهانه است.



خرید و دانلود تحقیق سقف کرمیت


تحقیق ریخته گری فولاد ذوب فلزات

تحقیق ریخته گری فولاد ذوب فلزات

فایل بصورت ورد (قابل ویرایش) و در 132 صفحه می باشد.

 

طراحان نیاز فراوانی به مواد مستحکم‌تر و مقاوم‌تر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهه‌های دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواسته‌های مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.

با شروع و ادامه جنگ جهانی دوم توربین‌های گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال 1920 افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قوی‌تر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.

 

مقدمه    ۹
۱-۱- معرفی و به کار گیری سوپر آلیاژها    ۹
۱-۲- مروری کوتاه بر فلزات با استحکام در دمای بالا    ۱۰
۱-۳- اصول متالورژی سوپر آلیاژها    ۱۱
۱-۴- بعضی از ویژگیها و خواص سوپر آلیاژها    ۱۳
۱-۵- کاربردها    ۱۵
۲-۱- کلیات    ۱۸
۲-۲- شکل سوپر آلیاژها    ۱۸
۲-۳- دمای کاری سوپرآلیاژها    ۱۹
۲-۴- مقایسه سوپر آلیاژهای ریخته و کار شده    ۲۰
۲-۴-۱- سوپر آلیاژهای کار شده    ۲۰
۲-۴-۲- سوپر آلیاژهای ریخته    ۲۱
۲-۵- خواص سوپرآلیاژها    ۲۲
۲-۵-۱- کلیات    ۲۲
۲-۵-۲- سوپر آلیاژهای پیشرفته    ۲۳
۲-۵-۳- خواص مکانیکی و کاربرد سوپرآلیاژها    ۲۴
۲-۶- انتخاب سوپرآلیاژها    ۲۶
۲-۶-۱- کاربردهای آلیاژهای کار شده در دمای متوسط    ۲۶
۲-۶-۲- کاربردهای آلیاژهای ریخته در دمای بالا    ۲۷
۳-۱- گروه‌ها، ساختارهای بلوری و فازها    ۳۱
۳-۱-۱- گروه‌های سوپرآلیاژها    ۳۱
۳-۱-۲- ساختار بلوری    ۳۱
۳-۱-۳- فاز در سوپرآلیاژها    ۳۲
۳-۲- مقدمه‌ای بر گروه‌های آلیاژی    ۳۳
۳-۲-۱- سوپر آلیاژهای پایه آهن- نیکل    ۳۳
۳-۲-۲- سوپرآلیاژهای پایه نیکل    ۳۴
۳-۲-۳- سوپرآلیاژهای پایه کبالت    ۳۵
۳-۳- عناصر آلیاژی و اثرات آنها بر ریزساختار سوپرآلیاژها    ۳۶
۳-۳-۲- عناصر اصلی در سوپرآلیاژها    ۳۶
۳-۳-۳- عناصر جزئی مفید در سوپرآلیاژها    ۳۷
۳-۳-۴- عناصر تشکیل دهنده فازهای ترد    ۳۷
۳-۳-۵- عناصر ناخواسته و مضر در سوپرآلیاژها    ۳۸
۳-۳-۶- عناصر ایجاد کننده مقاومت خوردگی و اکسیداسیون    ۳۸
۳-۴- استحکام دهی سوپرآلیاژها    ۳۹
۳-۴-۱- رسوب‌ها و استحکام    ۳۹
۳-۴-۲- فاز      ۴۰
۳-۴-۳- فاز      ۴۱
۳-۴-۴- کاربیدها    ۴۱
۳-۴-۵- کاربیدهای M7C3    ۴۴
۳-۴-۶- بوریدها و عناصر جزئی مفید دیگر (به جز کربن)    ۴۴
۳-۵- تاثیر فرآیند بر بهبود ریز ساختار    ۴۵
ذوب و تبدیل    ۴۶
۴-۱- فرآیند EAF/AOD    ۴۷
۴-۱-۱- تشریح فرآیند EAF/AOD    ۴۷
۴-۲- عملیات کوره قوس الکتریکی/ کربن زدایی با اکسیژن و آرگن (EAF/AOD)    ۵۰
۴-۲-۱- ترکیب شیمیایی آلیاژ و آماده کردن شارژ    ۵۰
۴-۲-۲- بارگذاری EAF    ۵۲
۴-۲-۳- کوره قوس الکتریک    ۵۲
۴-۲-۴- تانک AOD    ۵۵
۴-۲-۵- پاتیل ریخته‌گری    ۵۷
۴-۳- مروری بر ذوب القایی در خلاء (VIM)     ۵۸
۴-۳-۲- تشریح فرآیند VIM    ۵۹
۴-۴- عملیات ذوب القایی در خلاء    ۶۱
۴-۴-۱- عملیات ذوب القایی در خلاء    ۶۱
۴-۴-۲- کوره القائی تحت خلاء    ۶۳
۴-۴-۳- سیستم‌های ریخته‌گری    ۶۵
۴-۴-۴- عملیات ذوب القایی در خلاء    ۶۷
۴-۵- مروری بر ذوب مجدد    ۷۱
۴-۵-۲- تشریح فرآیند ذوب مجدد در خلاؤء با قوس الکتریکی (VAR)    ۷۲
۴-۵-۳- تشریح فرآیند مجدد با سرباره الکتریکی (ESR)    ۷۳
۴-۶- عملیات ذوب مجدد در خلاء با قوس الکتریکی    ۷۴
۴-۶-۱- کوره VAR    ۷۴
۴-۶-۲- عملیات ذوب مجدد در خلاء با قوس الکتریکی    ۷۶
۴-۶-۳- کنترل ذوب مجدد در خلاء با قوس الکتریکی    ۷۶
۴-۷- عملیات ذوب مجدد با سربار الکتریکی (ESR)    ۷۹
۴-۷-۱- کوره ESR    ۷۹
۴-۷-۲- عملیات کوره ذوب مجدد با سرباره الکتریکی    ۸۰
۴-۷-۳- کنترل ذوب مجدد با سرباره الکتریکی    ۸۱
۴- انتخاب سرباره    ۸۳
۴-۸- محصولات ذوب سه مرحله‌ای    ۸۴
۴-۸-۲- ‏فرآیند ذوب سه مرحله‌ای شمش    ۸۵
۴-۹- تبدیل شمش و محصولات نورد    ۸۶
۴-۹-۲- همگن‌سازی توزیع عنصر محلول در شمش‌ها    ۸۸
۴-۹-۳- آهنگری محصول نیمه تمام    ۸۹
۴-۹-۴- آهنگری محصول نیمه تمام آلیاژ IN-718    ۹۱
۴-۹-۵- اکستروژن    ۹۲
۴-۹-۶- نورد    ۹۳
۴-۹-۷- دسترسی به محصولات نورد    ۹۴

مقدمه

طراحان نیاز فراوانی به مواد مستحکم‌تر و مقاوم‌تر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهه‌های دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواسته‌های مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.

با شروع و ادامه جنگ جهانی دوم توربین‌های گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال ۱۹۲۰ افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قوی‌تر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.

۱-۱- معرفی و به کار گیری سوپر آلیاژها

سوپر آلیاژها؛ آلیاژهای پایه نیکل، پایه آهن- نیکل و پایه کبالت هستند که عموماً در دماهای بالاتر از oC540 استفاده می‌شوند. سوپر آلیاژهای پایه آهن- نیکل مانند آلیاژ IN-718 از فن‌آوری فولادهای زنگ نزن توسعه یافته و معمولاً به صورت کار شده می‌باشند. سوپر آلیاژهای پایه نیکل و پایه کبالت بسته به نوع کاربرد و ترکیب شیمیایی می‌توانند به صورت ریخته یا کار شده باشند.

در شکل ۱-۱ رفتار تنش- گسیختگی سه گروه آلیاژی با یکدیگر مقایسه شده‌اند (سوپر آلیاژهای پایه آهن- نیکل، پایه نیکل و پایه کبالت). در جدولهای ۱-۱ و ۱-۲ فهرستی از سوپر آلیاژها و ترکیب شیمیایی آنها آورده شده است.

سوپر آلیاژهای دارای ترکیب شیمیایی مناسب را می‌توان با آهنگری و نورد به اشکال گوناگون در آورد. ترکیب‌های شیمیایی پر آلیاژتر معمولاً به صورت ریخته‌گری می‌باشند. ساختارهای سرهم بندی شده را می‌توان با جوشکاری یا لحیم‌کاری بدست آورد، اما ترکیب‌های شیمیایی که دارای مقادیر زیادی از فازهای سخت کننده هستند، به سختی جوشکاری می‌شوند. خواص سوپر آلیاژها را با تنظیم ترکیب شیمیایی و فرآیند (شامل عملیات حرارتی) می‌توان کنترل کرد و استحکام مکانیکی بسیار عالی درمحصول تمام شده بدست آورد.

۱-۲- مروری کوتاه بر فلزات با استحکام در دمای بالا

استحکام اکثر فلزات در دماهای معمولی به صورت خواص مکانیکی کوتاه مدت مانند استحکام تسلیم یا نهایی اندازه‌گیری و گزارش می‌شود. با افزایش دما به ویژه در دماهای بالاتر از ۵۰ درصد دمای نقطه ذوب (بر حسب دمای مطلق) استحکام باید بر حسب زمان انجام اندازه‌گیری بیان شود. اگر در دماهای بالا باری به فلز اعمال شود که به طور قابل ملاحظه‌ای کمتر از بار منجر به تسلیم در دمای اتاق باشد، دیده خواهد شد که فلز به تدریج با گذشت زمان ازدیاد طول پیدا می‌کند. این ازدیاد طول وابسته به زمان خزش نامیده می‌شود و اگر به اندازه کافی ادامه یابد به شکست (گسیختگی) قطعه منجر خواهد شد. استحکام خزش یا استحکام گسیختگی (در اصطلاح فنی استحکام گسیختگی خزش یا استحکام گسیختگی تنشی نامیده می‌شود) همانند استحکام‌های تسلیم و نهایی در دمای اتاق یکی از مولفه‌های مورد نیاز برای فهم رفتار مکانیکی ماده است. در دماهای بالا استحکام خستگی فلز نیز کاهش پیدا می‌کند. بنابراین برای ارزیابی توانایی فلز با در نظر گرفتن دمای کار و بار اعمال شده لازم است، استحکام‌های تسلیم و نهایی، استحکام خزش، استحکام گسیختگی و استحکام خستگی معلوم باشند. ممکن است به خواص مکانیکی مرتبط دیگری مانند مدول دینامیکی، نرخ رشد ترک و چقرمگی شکست نیز نیاز باشد. خواص فیزیکی ماده مانند ضریب انبساط حرارتی، جرم حجمی و غیره فهرست خواص را تکمیل می‌کنند.

۱-۳- اصول متالورژی سوپر آلیاژها

سوپر آلیاژهای پایه آهن، نیکل و کبالت معمولاً دارای ساختار بلوری با شکل مکعبی با سطوح مرکزدار (FCC) هستند. آهن و کبالت در دمای محیط دارای ساختار FCC نیستند. هر دو فلز در دماهای بالا یا در حضور عناصر آلیاژی دیگر دگرگونی یافته و شبکه واحد آنها به FCC تبدیل می‌شود. در مقابل، ساختمان بلوری نیکل در همه دماها به شکل FCC است. حد بالایی این عناصر در سوپر آلیاژها توسط دگرگونی فازها و پیدایش فازهای آلوتروپیک تعیین نمی‌شود بلکه توسط دمای ذوب موضعی آلیاژها و انحلال فازهای استحکام یافته تعیین می‌گردد. در ذوب موضعی بخشی از آلیاژ که پس از انجماد ترکیب شیمیایی تعادلی نداشته است در دمایی کمتر از مناطق مجاور خود ذوب می‌شود. همه آلیاژها دارای یک محدوده دمایی ذوب شدن هستند و عمل ذوب شدن در دمای ویژه‌ای صورت نمی‌گیرد، حتی اگر جدایش غیر تعادلی عناصر آلیاژی وجود نداشته باشد. استحکام سوپر آلیاژها نه تنها بوسیله شبکه FCC و ترکیب شیمیایی آن، بلکه با حضور فازهای استحکام دهنده ویژه‌ای مانند رسوب‌ها افزایش می‌یابد. کار انجام شده بر روی سوپر آلیاژ (مانند تغییر شکل سرد) نیز استحکام را افزایش می‌دهد، اما این استحکام به هنگام قرارگیری فلز در دماهای بالا حذف می‌شود.

تمایل به دگرگونی از فاز FCC به فاز پایدارتری در دمای پایین وجود دارد که گاهی در سوپر آلیاژهای کبالت اتفاق می‌افتد. شبکه FCC سوپر آلیاژ قابلیت انحلال وسیعی برای بعضی عناصر آلیاژی دارد و رسوب فازهای استحکام دهنده (در سوپر آلیاژهای پایه آهن- نیکل و پایه نیکل) انعطاف‌پذیری بسیار عالی آلیاژ را به همراه دارد. چگالی آهن خالص gr/cm3 87/7 و چگالی نیکل و کبالت تقریباً gr/cm3 ۹/۸ می‌باشد. چگالی سوپر آلیاژهای پایه آهن- نیکل تقریباً gr/cm3 3/8-9/7 پایه کبالت gr/cm3 4/9-3/8 و پایه نیکل gr/cm3 9/8-8/7 است.

چگالی سوپر آلیاژها به مقدار عناصر آلیاژی افزوده شده بستگی دارد. عناصر آلیاژی Cr, Ti و Al چگالی را کاهش و Re, W و Ta آنرا افزایش می‌دهند. مقاومت به خوردگی سوپر آلیاژها نیز به عناصر آلیاژی افزوده شده به ویژه Cr, Al و محیط بستگی دارد.

دمای ذوب عناصر خالص نیکل، کبالت و آهن به ترتیب ۱۴۵۳ و ۱۴۹۵ و ۱۵۳۷ درجه سانتی‌گراد است. دمای ذوب حداقل (دمای ذوب موضعی) و دامنه ذوب سوپر آلیاژها، تابعی از ترکیب شیمیایی و فرآیند اولیه است. به طور کلی دمای ذوب موضعی سوپر آلیاژهای پایه کبالت نسبت به سوپر آلیاژهای پایه نیکل بیشتر است. سوپر آلیاژهای پایه نیکل ممکن است در دمای oC1204 از خود ذوب موضعی نشان دهند. انواع پیشرفته سوپر آلیاژهای پایه نیکل تک بلور دارای مقادیر محدودی از عناصر کاهش دهنده دمای ذوب هستند و به همین لحاظ، دارای دمای ذوب موضعی برابر یا کمی بیشتر از سوپر آلیاژهای پایه کبالت هستند.

۱-۴- بعضی از ویژگیها و خواص سوپر آلیاژها

۱- فولادهای معمولی و آلیاژهای تیتانیوم در دماهای بالاتر oC540 دارای استحکام کافی نیستند و امکان خسارت دیدن آلیاژ در اثر خوردگی وجود دارد.

۲- چنانچه استحکام در دماهای بالاتر (زیر دمای ذوب که برای اکثر آلیاژها تقریباً ۱۳۷۱-۱۲۰۴ درجه سانتیگراد است) مورد نیاز باشد، سوپر آلیاژهای پایه نیکل انتخاب می‌شوند.

۳- از سوپر آلیاژهای پایه نیکل می‌توان در نسبت دمایی بالاتری (نسبت دمای کار به دمای ذوب) در مقایسه با مواد تجاری موجود استفاده کرد. فلزات دیرگداز (نسوز) نسبت به سوپر آلیاژها دمای ذوب بالاتری دارند ولی سایر خواص مطلوب آنها را ندارند و به همین خاطر به طور وسیعی مورد استفاده قرار نمی‌گیرند.

۴- سوپر آلیاژهای پایه کبالت را می‌توان به جای سوپر آلیاژهای پایه نیکل استفاده کرد که این جایگزینی به استحکام مورد نیاز و نوع خوردگی بستگی دارد.

۵- در دماهای پایین‌تر وابسته به استحکام مورد نیاز، سوپر آلیاژهای پایه آهن- نیکل نسبت به سوپر آلیاژهای پایه نیکل و پایه کبالت کاربرد بیشتری پیدا کرده‌اند.

۶- استحکام سوپر آلیاژ نه تنها مستقیماً به ترکیب شیمیایی بلکه به فرآیند ذوب، آهنگری و روش شکل‌دهی، روش ریخته‌گری و بیشتر از همه به عملیات حرارتی پس از شکل‌دهی، آهنگری یا ریخته‌گری بستگی دارد.

۷- سوپر آلیاژهای پایه آهن- نیکل نسبت به سوپر آلیاژهای پایه نیکل و پایه کبالت ارزان‌تر هستند.

۸- اکثر سوپر آلیاژهای کار شده برای بهبود مقاومت خوردگی دارای مقداری کروم هستند. مقدار کروم در آلیاژهای ریخته در ابتدا زیاد بود، اما به تدریج مقدار آن کاهش یافت تا عناصر آلیاژی دیگری برای افزایش خواص مکانیکی سوپر آلیاژهای دما بالا، به آنها افزوده شوند. در سوپر آلیاژهای پایه نیکل با کاهش کروم مقدار آلومینیوم افزایش یافت، در نتیجه مقاومت اکسیداسیون آنها در همان سطح اولیه باقی می‌ماند و یا افزایش می‌یابد، اما مقاومت در برابر انواع دیگر خوردگی کاهش می‌یابد.

۹- سوپر آلیاژها مقاومت در برابر اکسیداسیون بالایی دارند اما در بعضی موارد مقاومت خوردگی کافی ندارند. در کاربردهایی مانند توربین هواپیما که دما بالاتر از oC760 است سوپر آلیاژها باید دارای پوشش باشند. سوپر آلیاژها در کاربردهای طولانی مدت در دماهای بالاتر از oC649 مانند توربین‌های گازی زمینی می‌توانند پوشش داشته باشند.

۱۰- فن‌آوری پوشش‌دهی سوپر آلیاژها بخش مهمی از کاربرد و توسعه آنها می‌باشد. نداشتن پوشش به معنی کارآیی کم سوپر آلیاژ در دراز مدت و دماهای بالا است.

۱۱- در سوپر آلیاژها به ویژه در سوپر آلیاژهای پایه نیکل بعضی از عناصر در مقادیر جزئی تا زیاد اضافه شده‌اند. در بعضی از آلیاژها تعداد عناصر کنترل شده موجود تا ۱۴ عنصر و بیشتر می‌تواند باشد.

۱۲- نیکل، کبالت، کروم، تنگستن، مولیبدن، رنیم، هافنیم و دیگر عناصر استفاده شده در سوپر آلیاژها اغلب گران بوده و مقدارشان در طی زمان متغیر است.

۱-۵- کاربردها

کاربرد سوپر آلیاژها در دماهای بالا بسیار گسترده و شامل قطعات و اجزاء هواپیما، تجهیزات شیمیایی و پتروشیمی است. موتور F119 که یکی از آخرین موتورهای هواپیماهای نظامی است، نشان داده شده است. دمای گاز در بخش داغ موتور (ناحیه خروجی موتور) ممکن است به دمایی بالاتر از oC 1093 برسد. با استفاده از سیستمهای خنک کننده دمای اجزاء فلزی کاهش پیدا می‌کند و سوپر آلیاژ که توانایی کار کردن در این دمای بالا را دارد، جزء اصلی بخش داغ به شمار می‌رود.

اهمیت سوپر آلیاژها در تجارت روز را می‌توان با یک مثال نشان داد. در سال ۱۹۵۰ فقط ۱۰ درصد از کل وزن توربین‌های گاز هواپیما از سوپر آلیاژها ساخته می‌شد، اما در سال ۱۹۸۵ میلادی این مقدار به ۵۰ درصد رسید.

در جدول ۱-۳ فهرستی از کاربردهای جاری سوپر آلیاژها آورده شده است.باید خاطر نشان ساخت، که همه کاربردها به استحکام در دمای بالا نیاز ندارند. ترکیب و مقاومت خوردگی سوپر آلیاژها، مواد استانداردی برای ساخت وسایل پزشکی بوجود آورده است. سوپر آلیا ژها همچنین کاربردهایی در دماهایی بسیار پایین پیدا کرده‌اند.



خرید و دانلود تحقیق ریخته گری فولاد ذوب فلزات