آموزش کتیا، طراحی سه بعدی Part Design در نرم افزار CATIA - قسمت دوم - نوار ابزار Dress Up Features

آموزش کتیا، طراحی سه بعدی Part Design در نرم افزار CATIA - قسمت دوم - نوار ابزار Dress Up Features

در عصر تکنولوژی اطلاعات، با روش های سنتی نمی توان جواب گوی نیازهای طراحی و ساخت بود و نمی توان توانمندی های کامپیوتر را در این زمینه نادیده گرفت. مخصوصاً در میدان رقابت که پارامترهائی چون: هزینه، زمان، کیفیت و سود مطرح می باشند. سیستم های طراحی به کمک کامپیوتر (CAD)، مهندسی به کمک کامپیوتر (CAE) و ساخت به کمک کامپیوتر (CAM) از سیستم های مطرح روز دنیا در صنایع هوافضا، دریائی و خودروئی می باشند. از نتایج استفاده این سیستم ها می توان کاهش زمان طراحی، کاهش خطا در طراحی، بهینه کردن طرح، کاهش زمان تولید، افزایش کیفیت محصول و افزایش سود دهی را نام برد. در این راستا نرم افزارهای زیادی به بازار ارائه شده است؛ اما استفاده از یک نرم افزار جامع، در یک مجموعه از اهمیت خاصی برخوردار می باشد که نرم افزار CATIA یکی از این نرم افزارهای جامع می باشد.

در قسمت های اول تا پنجم آموزش تصویری Part Design از این برنامه آموزشی قصد آن داریم چگونگی ساخت و مدل سازی اجسام سه بعدی سالید (Solid) را ارائه نماییم. پس از مطالعه و تمرین دستورات این بخش از نرم افزار کتیا کاربر قادر به ایجاد انواع مدل های سه بعدی ساده و پیچیده و نیز توانایی اجرای عملیات پس از ساخت بر روی مدل های ایجاد شده خواهد بود.

در قسمت دوم این مجموعه آموزشی شما با مجموعه دستورات کمک ترسیمی از نوار ابزار Dress Up Features در محیط Part Design به ترتیب زیر آشنا می شوید:

1. دستور Edge fillet: جهت ایجاد فیلت در لبه های جسم سه بعدی (زمان آموزش: 6 دقیقه و 26 ثانیه)، به همراه آموزش:

* دستور Variable Fillet: جهت ایجاد فیلت با شعاع انحنای متغیر

* دستور Face-Face Fillet: جهت ایجاد فیلت سه بعدی بین دو سطح مختلف

* دستور Tritangent Fillet: جهت ایجاد فیلت بین سه سطح

* دستور Chamfer: جهت ایجاد پخ روی جسم سه بعدی

* دستور Shell: جهت ایجاد پوسته از یک جسم سه بعدی با ضخامت معین

2. دستور Draft: جهت ایجاد سطوح تیپیدار (Tapering) (زمان آموزش: 3 دقیقه و 56 ثانیه)

3. دستور Thickness: جهت ایجاد ضخامت برای یک سطح (زمان آموزش: 2  دقیقه و 37 ثانیه)، به همراه آموزش:

* دستور Thread / Tap: جهت ایجاد رزوه در اجسام سه بعدی

 

جهت یادگیری نرم افزار پیشرفته کتیا از مرحله مقدماتی تا پیشرفته با کمترین هزینه فقط کافی است گام به گام با ما همراه باشید

  کلیه فایل های آموزشی این قسمت با فرمت Media Player و با کیفیت عالی چه از لحاظ صدا و چه از لحاظ تصویر می باشد.

 جهت خرید آموزش صوتی  تصویری محیط سه بعدی Part Design در نرم افزار کتیا CATIA - قسمت دوم به مبلغ استثنایی فقط 2000 تومان و دانلود آن بر لینک پرداخت و دانلود در پنجره زیر کلیک نمایید.

!!لطفا قبل از خرید از فرشگاه اینترنتی کتیا طراح برتر قیمت محصولات ما را با سایر فروشگاه ها مقایسه نمایید!!

 

!!!تخفیف ویژه برای کاربران ویژه!!!

با خرید حداقل 10000 (ده هزارتومان) از محصولات فروشگاه اینترنتی کتیا طراح برتر برای شما کد تخفیف ارسال خواهد شد. با داشتن این کد از این پس می توانید سایر محصولات فروشگاه را با 20% تخفیف خریداری نمایید. کافی است پس از انجام 10000 تومان خرید موفق عبارت درخواست کد تخفیف و ایمیل که موقع خرید ثبت نمودید را به شماره موبایل 09016614672 ارسال نمایید. همکاران ما پس از بررسی درخواست، کد تخفیف را به شماره شما پیامک خواهند نمود.



خرید و دانلود آموزش کتیا، طراحی سه بعدی Part Design در نرم افزار CATIA - قسمت دوم - نوار ابزار Dress Up Features


پایان نامه ی بررسی و مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتی در محیط آبی. doc

پایان نامه ی بررسی و مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتی در محیط آبی. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 95 صفحه

 

چکیده:

در این رساله ، مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتیNaCl(m1)+LiCl(m2)  در محیط آبی و در محدوده غلظتی 0.01 مول بر کیلوگرم تا حدود محلول های الکترولیتی اشباع شده ، بوسیله روش پتانسیومتری در دمایoC  25 مورد بررسی قرار گرفت . انحراف از ایده آلیته برای این مخلوط دوتایی الکترولیتی با تعیین ضرایب میانگین فعالیت  NaCl(m1)در یک سل گالوانی بدون اتصال مایع و با استفاده از یک الکترود یون گزین آمونیوم (Na+ ISE) با غشاء پلیمری حاوی آیونوفور سدیم  ) ( بهمراه یک الکترودAg/AgCl  مورد بررسی قرار گرفت. این بررسی با مدل سازی این سیستم الکترولیتی بر اساس مدل نیمه تجربی برهمکنش یونی Pitzer، با جمع آوری و ثبت رایانه ای داده های پتانسیومتری برای چهار سری مخلوط الکترولیتی این نمک ها (با کسر های مولالی : , 10, 50, 100 1r =m1/m2 =) در قدرت های یونی یکسان انجام گرفت.  بدین ترتیب با تطابق داده های پتانسیومتری و مدل نظری و با استفاده از روش نموداری Pitzer و همچنین با بهره گیری از روش محاسباتی تکرار، پارامترهای مختلف مربوط به ضرایب ویریال برای برهمکنش های یونی دوتایی و سه تایی ( ,   و ) برای نمک خالص NaCl و بویژه پارامترهای مختلف مخلوط الکترولیتی مورد نظر برای بر همکنش های یونی دوتایی (θNa,Li) و سه تایی )  (ΨNa,Li,Clبدست آمد. نتایج پتانسیومتری بدست آمده به خوبی با نتایج مشابه محاسباتی که براساس روش های فشار بخار (توسط Pitzer و همکاران) و نتایج حاصله از روش رطوبت سنجی (که توسط   Guendouziو همکاران) گزارش شده است ، توافق دارد. با توجه به این نکته که استفاده از این نوع الکترودها برای مطالعه تجربی چنین سیستم های حاوی مخلوط الکترولیتی فقط در این آزمایشگاه انجام گرفته است ، نتایج حاصله و روش الکتروشیمیایی ارائه شده با این نوع الکترود ها در بررسی ترمودینامیکی چنین مخلوط های الکترولیتی که دارای مزایایی چون سرعت اندازه گیری بالا و امکان دستیابی به نتایج مربوط به رقت های زیادتر را دربرمیگیرد ، میتواند بعنوان یک روش قابل توجه در بررسی ترمودینامیکی مخلوط های الکترولیتی قلمداد گردد.

 

مقدمه:

کمتر کسی است که از اهمیت محلولها غافل باشد تمام مواد برای اینکه جذب بدن شوند باید بصورت محلول درآیند تا بتوانند از غشاء سلول عبور نمایند. همچنین طبیعت اطراف ما براساس انحلال و عدم انحلال مواد شکل گرفته است .

تاریخ گسترده شیمی بر اهمیت فوق العاده پدیده حلالیت گواهی می دهد . طبیعت اسرار آمیز محلولها، فلاسفه با ستان را به تفکر واداشت کیمیاگران قرون وسطی در جستجوی طلا و زندگانی ابدی بودند از اینرو علاقمند به تهیه آب حیات و حلال جهانی  بودند.

با گذشت زمان و با افزایش علم بشر، علوم و اعتقادات خرافه ای جای خود را به دانش منطقی و بر مبنای واقعیت داد . اما با این وجود با توسعه علم شیمی از اهمیت موضوع کم نشد و شیمیدانان همیشه و در همه جا با مسائل مربوط به حلالیت مواجه می شوند. آنها از تفاوت حلالیت مواد، در فرآیندهای جداسازی و خالص سازی بهره می گیرند و روشهای تجریه ای آنها تقریبا به طور کامل بر ان استوار است. اغلب واکنشهای شیمیایی در فاز محلول انجام می شود و تحت تاثیر حلالیت اجزاء درون محلول قرار دارد. نیروهای جاذبه و دافعه ای که حلالیت یک گونه در فاز مایع یا جامد را تعیین می کنند هر نوع تعادل فازی بین دو یا چند جزء را کنترل می کنند . محلولهای الکترولیت بدلیل اهمیتی که دارند توجه شیمدانان را به خود معطوف داشته اند .

فارای، نخستین شخصی بود که واژه الکترولیت رادر مورد ترکیباتی که محلول یا مذاب آنها رسانای الکتریسیته است به کار برد و واژه های دیگری از قبیل یون، کاتیون، آنیون و غیره را در الکتروشیمی رایج ساخت و بعد از او آرنیوس به مطالعه و بررسی خواص محلولهای الکترولیت پرداخت و نظریه نسبتﴼ دقیق و روشنی را در مورد در رفتار الکتریکی محلولهای الکترولیت بیان نموده و به این ترتیب که واحدهای اجسام الکترولیت در موقع حل شدنشان در آب، به دو یا چند ذره دارای بار الکتریکی تقسیم می شوند و این ذرات باردارد که یون نام دارند عهده دار رسانش الکتریسیته در محلول هستند. تا سال 1920 معلوم شده بود که رفتار الکترولیتها در غلظتهای کم از محلول های غیر الکترولیت متفاوت است .

در سال 1920 میلنر  به صورت تئوری توضیح داد . که علت این تفاوت نیروهای بابرد بلند می باشد. در سال 1923 دبای – هوکل توضیح ساده ای را ارائه دادند که با در نظر گرفتن نیروهای برد بلند بین یونها بدست آمده بود . سپس نظریه پردازهای زیادی، مسئله یک الکترولیت را با دقت زیادمورد بررسی قراردادند و قانون حدی دبای-هوکل را تصحیح کردند. حتی بعضی از این نظریه ها برای توضیح رفتار محلولهای الکترولیت غلیظ به کار رفت. پیشرفتهای مهم در این زمینه درحدود 50 سال گذشته بوده است، که حتی در مورد الکترولیتهای مخلوط، تا غلظتهای نسبتا بالا نیز نظریه هایی ارائه گردید. گوگنهایم معادله دبای- هوکل را برای غلظتهای بالا اصلاح کرد. در سال 1973 پیترز مدل جامعی را برای پیش بینی ضرایب فعالیت الکترولیتها ارائه داد . سپس دانشمندان زیادی از جمله چن ، لی، سون، سیمون، کوپمات و بلوم و ورا این کار را برای پیش بینی نظری ضرایب فعالیت ادامه دادند. علاوه بر این روشهای نظری، روشهای تجربی نیز برای اندازه گیری ضرایب فعالیت وجود دارد . مانند افزایش نقطه جوش، کاهش نقطه انجماد محلول نسبت به حلال، کاهش فشار بخار حلال، فشار اسمزی. که میزان تغییر این خواص در محلولهای الکترولیت چند برابر محلولهای غیر الکترولیت با مولالیته های یکسان است.

سوال اساسی در مورد انحراف از ایده آلی در محلولهای الکترولیت بر پایه نیروهای بین ذرات است لذا در شروع بحث در فصل اول به معرفی نیروهای بین ذره ای و نحوه ای عملکردشان می پردازیم، سپس در مورد انواع محلولها در روابط ترمودینامیکی حاکم بر آنها شرح مبسوطی خواهیم داد ودر آخر مدلهای ارائه شده برای تعیین ضریب فعالیت و روشهای تجربی اندازه گیری ضریب فعالیت را می آوریم. و در فصل دوم نحوه استفاده از روش پتانسیومتری برای تعیین ضرایب میانگین فعالیت برای مخلوط الکترولیتها  و تعیین پارامترهای بر هم کنش یونی دوتایی و سه تایی     برای مخلوط الکترولیت مورد نظر شرح خواهیم داد .

 

فهرست مطالب:

چکیده

مقدمه

بخش اول - مبانی نظری

 نیروهای بین ذره ای

1-1-1 برهم کنش های بلندبرد

1-1-2      برهم کنشهای کوتاه برد

1-2 محلولها و روابط ترمودینامیکی آنها

1-2-1 محلول ایده آل

1-2-2 روابط ترمودینامیکی محلولهای ایده آل

1-2-3- محلولهای با قاعده

1-2-4 محلولهای غیر ایده آل

1-2-5 ترمودینامیک محلولهای غیر ایده آل

1-2-5-1 پتانسیل شیمیایی حلال، فعالیت حلال و ضریب اسمزی در محلولهای غیر ایده آل

1-2-6 معادله گیبس – دوهم برای محلولهای الکترولیت دوجزئی و رابطه بین ضریب فعالیت و ضریب اسمزی

1-3 مدل های توصیف کننده محلولهای الکترولیتی

1-3-5 مدل دبای- هوکل

1-3-2- 1 پتانسیل در همسایگی یک یون

1-3-1-1- ایرادات نظریه دبای هوکل

1-3-2 مدل گوگنهایم

1-3-3 مدل مایزنر وکوزیک

1-3-4 مدل هیدراسیون استوکس و رابینسون

1-3-5 مدل براملی

1-3-6 مدل برهم کنش یونی پیتزر

1-3-6-1 معادلات پیترز برای محلول الکترولیتی یک جزئی

1-3-6-2  معادلات پیترز برای مخلوط های دو جزئی الکترولیت های

1-4- روشهای تجربی اندازه گیری ضرایب فعالیت

1-4-1 تنزل نقطه انجماد

1-4-2 افزایش نقطه جوش

1-4-3    تنزل فشار بخار

1-4-3-الف – روش استاتیک

1-4-3- ب  روش دینامیکی

1-4-4- روش ایزوپیستیک یا تعادل فشار بخار

1-4-5- روش رطوبت سنجی

1-4-6  روش حلالیت و نفوذ

1-4-7  روش هدایت سنجی

1-4-8  روشهای الکتروشیمیایی

1-4-8-1 استفاده از مدل برهم کنش یونی پیترز با استفاده از روش الکتروشیمیایی

بخش دوم - بخش تجربی

2-1 تجهیزات دستگاهی

2-2 مواد شیمیایی

2-3 تهیه محلولها

 2-3-1- تهیه محلول غلیظ لیتیم کلرید با غلظت تقریبی

2-3-2  تهیه محلولهای اولیه غلیظ دوجزئی NaCl + LiCl با نسبتهای مولی مختلف(r =m1/m2)

2-3-2-1- تهیه محلول غلیظ اولیه دو جزئی NaCl + LiCl با نسبت مدلی (r=100)

2-4  روش پتانسیومتری با استفاده از الکترودیون گزین (سلول الکتروشیمیای بدون اتصال مایع)

2-5 روش افزایش استاندارد

2-6 تعیین ضرایب میانگین فعالیت بروش پتانسیومتری

2-6-1- جمع آوری داده های تجربی

2-6-2 کنترل کیفیت پاسخ دهی الکترودها

2-6-3  تعیین شیب نرنستی و همزمان دو الکترود در سلول بدون اتصال مایع (شیب وثابت سل)

2-6-4 روش تعیین پارامترهای برهم کنش یونی مخلوط دو جزئی الکترولیت 1 1(NaCl + LiCl)با نسبتهای مدلی مختلف

2-6-4-1     تعیین ضریب انتخابگری پتانسیومتری الکترود Na+ نسبت به یون Li+ (k12)

2-6-4-2    روش تعیین ضرایب میانگین فعالیت

2-6-4-3   تعیین پارامترهای در سیستم محلول یک جزیی NaCl

2-6-4-4  تعیین پارامترهای برهم کنش یونی مخلوط دو جزئی NaCl+LiCl با نسبت های مولی مختلف

2-7- نتیجه گیری

جداول و نمودارها

منابع

خلاصه انگلیسی

 

منابع و مأخذ:

[1] pitzer , k, Mayorga, G,’ “J.phys.chemistry” ,1973,77,19,2300,2308

[2]pirzer , k“J.phys.chemistry”,1977,10,371-372

[3]Clegg, s, pitzer, “J. phys. Chem.” , 1992,96,3513,350

[4]pitzer, k,Simonson, J,” J . phys. Chem”1986,90,3005-3009

[5]pitzer, k ,”J. phys chem.” ,77,2,268-277

[6]Hildebrand, J.H., prausnitz, Scott,R.L ,”Regular and Related Solution” van norstrand  Reinhold . co , Newyork (1970)

[7]Rowlinson,J.S.,Swinton.F.L”.liquidmixtures”,3rded.Butter worth&Co(1982)

[8]Berry.R.S;Rice, S.A; Ross,J; “J. physical chemistry” ,John wiley & Sons, Newyork 1980

[9]Barrow, G.M;” physical chemistry” 4thed ;Mc Graw Hill( 1988)

[10] Levine, I.N;” phtsical chemisty”   

[11] Atkinz,p.W; “3 physical chemistry”5ed Oxford university press,1995

[12]Skoog,D; West,D.M; “Fundamentals of analytical chemistry”,4 ed Holt- Saunders International( 1982)

[13]CASTELLAN,G.W;” plysical chemistry”,1 ed Addison – Wesley publishing Co,( 1964)  

[14]Pitzer K.S,Mayorga.G."J.Sol.Chem",1974,10,371

[15]Deyhimi.F,Ghalami.B,"J.of Electroanalytical Chemistry"2005

[16]Lewis  G.N,and Randal M.,Pitzer K.S"Phys.Chem" Mc Graw Hill,New York,1961

[17]Pitzer K.S,"J.Phys.Chem"197713,371

[18] Pitzer K.S,Simonson J.,"SJ.Phys.Chem",1989,4,320

[19] Hovath,A.L.,(1985),”Handbook of Aqueous Electrolyte Solution”Ellis Horwood Series In Physical Chemistry.                                                        

[20] Harned,H.S.,Owen,B.B.,(1958)”Physical Chemistry Of Electrolyte   Solution”,Reinhold,N.Y.                                                                         

[21] Deyhimi F;talanta,1999,50,1129                                                            .

[22] Krus,P.,(1977),”Liquids and Solution Structure Dynamics”Marcel            Dekkerinc.,Ny.                                                                                        

[23]Malatesta F. Zaboni R.,"J.Sol.Chem",1977,26,791

[24] Barrow, G.M;” physical chemistry” 5thed ;Mc Graw Hill( 1988)

[25] Robinson,R.A.,Stokes,R.H.,(1959),”Electrolyte Solution”

                                                                         Butterworths Scentific,London.                                   

[26]Parsafar G.A;Mason E.A;"J.Phys.Chem",1993,97,35,9048

[27] Chen C.C,Eva L.B,A.I.Ch.E.J.,1986,32,444

[28] Chen.C.C,Brit.H.I,Boston.J.F,Evans.L.B.A.I.Ch.E.J,1982,28,588 

[29] Pitzer,K.S.,(1979),”Activity Coefficient of Electrolyte Coefficient” Eeditd by Pytkowitcz,R.M.,CrC.Press.

[30] Walter,j.,Wu.Y-C.,(1972),J.Phys.S.Chem.Ref,Data,1,4,1047               

[31] .Scatchard,G.,Prentiss.S.S.,(1934),George Scatchard and S. S. Prentiss, 56, 2314                                                                            

[32] Lee,L.L.,(1988),J.Chem.Phys.,78,5270                                              

[33] Guggenhaim,E.,(1935),Phi,Mag.,19,313.                                              

[34] Chiristenesen,C.,Sander,C.B.,Frdenslund,A.,Rasmussen,P.,(1983),      

Fluid Phase Equilibria,13,279.                                                               

[35] Chorng,S.,Hirata,S.,F.,(1997),101,3209                                                 

[36]  Samoilov,O.Ya.,(1965),”Stracture of Electrolyte Solution and The Hydration of Ions”,Consultants Bureau Enterprise INC.,N.                   

[37] Harvey,A.H.,Copeman,T.W.,Prausnitz,J,M.,(1988),J.Phys.Chem.,92,  

,64,32,                                                                                                      

[38] Stokes,R.H.,Robinson,R.A.,(1948),J.Amer.Chem.Soc.,70,1870.          

[39] Zemaitis,J.F.,Clark,D.M.,Rafal,M.,(1986),”Handbook of Aqueos    Electrolyte Thermodynamics”Dipper,AIChE Publiation.N.Y.

[40] Zemaitis,J.F.,Clark,D.M.,Rafal,M.,(1986),”Handbook of Aqueos Electrolyte Thermodynamics”Dipper,AIChE Publiation.N.Y.

[41] Meissner,H.P.,(1980),”Thermodynamics of Aqueous Systems With Industirial Appilcations”,edited by Newman,S.A.,Acs Sym Posium

[42]Gering.K.L.,(1964),J.Amer.Chem.Soc.,86.127.

[43]  پایان نامه دوره کارشناسی ارشد,سلامت,رحمن,زیر نظر دکتر دیهیمی,دانشگاه شهید بهشتی2003

[44]طر ح پژوهشی,دانشگاه شهید بهشتی ,گروه شیمی مجری طرح فرزاد دیهیمی,یک روش جدید ضرایب گزینش پذیری الکترود های یون گزین                                                                                  



خرید و دانلود پایان نامه ی بررسی و مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتی در محیط آبی. doc


تحقیق درباره آلودگی محیط زیست

تحقیق درباره آلودگی محیط زیست

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:14
فهرست و توضیحات:

دید کلی

مقدمه

نفتی

آلودگی در سواحل

فوائد جنگل

 

  آتش سوزی سطحی

این نوع آتش سوزی در اثر آتش گرفتن علوفه های خشک،شاخه و برگ درختان و مازاد مقطوعات جنگل حادث می گردد.در این نوع آتش سوزی خسارات بیشماری به نونهالهای جوان وارد و موجب سوختن یقه درختان جوان و آسیب دیدگی کنده های مسن درختان می گردد.خصوصأ در گونه های که ضخامت پوست آنها اندک است (راش) پس از صدمه خوردن پوست درختان بتدریج ارتباط رساندن مواد غذایی به اندههای درخت قطع و پس از ریزش پوست ،تنه اصلی دچار پوسیدگی و فساد و محل رشد انواع قارچها و امراض می گردد.و در صورت تغیرات جوی و وزش بادهای شدید این آتش سوزی به انواع دیگر آتش سوزی تنه ای یا تاجی تبدیل گردیده و خسارت ناشی از آن به مراتب بیشتر خواهد شد.

3-آتش سوزی تنه ای

چنانچه آتش سوری سطحی در جنگل اتفاق افتد که دارای تنه های سرپا خشک سرپا و میان تهی باشد تدریجأ آتش از منافذ تنه درخت به داخل تنه نفوذ و پس از مدت زمانی کوتاه بصورت تنوره کشان ظاهر و پس از قطع از منطقه یقه و برخورد با زمین متلاشی و در شیب های تند به فواصل دور پرتاب و کانون های جدیدی از آتش را در جنگل بوجود می آورند.

4-آتش سوزی تاجی

نوع دیگری از آتش سوزی است که معمولا در جنگلهای سوزنی برگ اتفاق می افتد . وجود مواد رزینی در غالب اینگونه درختان این آتش سوزی را ایجاد و مبارزه با اینگونه آتش سوزی ها را بی اندازه مشکل میسازد.در جنگلهای پهن برگ و بکر بدلیل وجود درختان مقهور و زبون که بصورت خشک و نیمه خشک در اشکوب های میانی جنگل و بصورت پلکان حرارتی عمل هدایت گرما از زمین به تاج درختان را عهده دارند. در صورت وقوه آتش سوزی سطحی و وزش بادهای گرم ،این نوع آتش سوزی بوقوع می پیوندد.

بطور خلاصه در آتش سوزی های زمینی و سطحی به درختانی که ضخامت پوست آن ها زیاد است (بلوط) خسارات ناچیزی وارد می نماید،حال آنکه آتش سوزی تنه ای و تاجی موجب خشک شدن و گاهأ نابودی کامل درختان سرپا را بهمراه دارد.



خرید و دانلود تحقیق درباره آلودگی محیط زیست


دانلود پاورپوینت درک و بیان محیط شهری

دانلود پاورپوینت درک و بیان محیط شهری

 

 

 

 

 

 

 پاورپوینت درک و بیان محیط شهری در 84 اسلاید کامل و قابل ویرایش می باشد.

 

بخش اول تبیین جایگاه روانشناسی محیطی با استفاده از مبانی نظری هنجاری و اثباتی و مفهوم ابعاد محتوایی و رویه ای طراحی محیط

 

 

سه مفهوم اساسی در مبانی نظری طراحی محیط

 

1-فرضیه Hypothesis: پیش بینی نتیجه یک عمل خاص.

2-مدل Model: راهی است برای درک واقعیت و دادن ساختار به آن واقعیت.

3-نظریه Theory: نظامی از انگاره ها و طرحواره های ذهنی که پدیده یک یا گروهی از پدیده ها را توصیف و تبیین می کنند.

 

و ........

 



خرید و دانلود دانلود پاورپوینت درک و بیان محیط شهری