پاورپوینت مباحث پایه ای برق برای تعمیرکاران لوازم خانگی
سرفصل ها
اجزاء اتم
الکترونهای آزاد
رسانا ها
عایق ها
نیمه هادی ها
بارهای الکتریکی
جریان
ولتاژ
مقاومت
قانون اهم
مثلث قانون اهم
مدار در مقاومتی سری
ولتاژ در مدار سری
مدار موازی
مقاومت در مدار موازی
ولتاژ در مدار موازی
جریان در مدار موازی
جریان در مدارات موازی
مدارات مختلط
مدارات مختلف
مغناطیس و الکتریسیته
جریان یا ولتاژ RMS
خاصیت سلفی وسلف
راکتانس
امپدانس
فازهای ولتاژ و جریان
فازهای ولتاژ و جریان در مدار سلفی
فازهای ولتاژ و جریان در مدارات سلفی ومقاومتی
فازهای ولتاژ و جریان در مدارات خازنی
فازها در مدارات خازنی و مقاومتی
محاسبه امپدانس
محاسبه ی امپدانس با قانون اهم
توان
ضریب توان
ترانسفورمرها
ترانسفورمرهای افزاینده
ترانسفورمرهای کاهنده
ترانسفورمرهای سه فاز، ثانویه دلتا
ترانسفورمرهای سه فاز با اتصال ثانویه ستاره
و...............
اگر با گوشی اندروید خرید می کنید یکی از نرم افزارهای زیر را بصورت رایگان دانلود و درگوشی خود اجرا کنید
تا بتوانید به راحتی و بدون نیاز به کامپیوتر فایل های زیپ خریداری شده را در گوشی خود باز نموده و نصب نمایید
نرم افزار رایگان برای باز کردن فایل های zip در اندروید
پشتیبانی کامل از فرمت های zip, alz, egg, tar, tar.gz, tar
پشتیبان گیری از فایل های فشرده
پشتیبانی از اتصال به سرور FTP
ایجاد فایل های فشرده
تغییر سایز تصاویر
حجم فایل 7.09 MBRAR for Android v5.10حجم فایل 2.19 MB
دانلود رایگان اصل مقاله انگلیسی
سال انتشار :2014
تعداد صفحات انگلیسی:9
تعداد صفحات فارسی به فرمت ورد:27
Abstract
This paper presents the impacts caused by the integration of variable speed wind turbines on long-term voltage stability. The technologies used are fully rated converter (FRC) and doubly fed induction generator (DFIG) with two control strategies: grid-side converter (GSC) at unity power factor, which is usually adopted, and GSC controlling reactive power. Also, this paper considers wind turbines capability curves and its variable limits, since they are subject to several limitations that changes with the operating point and wind speed. This study also considers the dynamic models of over excitation limiter (OEL) and on-load tap changers (OLTC) combined with static and dynamic loads using time domain simulations. Different penetration levels of wind generation are analyzed. The results show that long-term voltage stability can be improved when GSC of DFIG is controlling reactive power. Moreover, the capability curve plays an important role in this analysis since reactive power is a key requirement to maintain voltage stability
چکیده
این مقاله تاثیر های ایجاد شده بوسیله یکپارچه سازی توربین های بادی سرعت متغییر بر روی پایداری بلند مدت ولتاژ را ارائه میدهد.تکنولوژی های استفاده شده، کانورتر های ظرفیت کامل (FRC) و ژنراتورهای القایی دو سو تغذیه(DFIG) با دو استراتژی کنترلی شامل کانورتر سمت شبکه (GSC) در ضریب توان واحد که معمولا مورد استفاده قرار میگیرد و کنترل توان راکتیو GSCهستند. این مقاله همچنین منحنی های ظرفیت توربین بادی و قیود متغییر آن را از آنجایی که آنها در معرض چندین قید قرار درند که با نقطه کار و سرعت باد تغییر میکنند را مورد بررسی قرار میدهد.این مقاله همچنین مدل محدود کننده فوق تحریک (OEL) و تپ چنجر روی بار (OLTC) که با بارهای استاتیکی و دینامیکی ترکیب شده است را با استفاده از شبیه سازی حوزه زمان مورد بررسی قرار میدهد.نتایج نشان میدهد که پایداری بلند مدت ولتاژ زمانی که GSC، DFIG توان راکتیو را کنترل میکنند میتواند بهبود پیدا کند.علاوه بر این از آنجایکه توان راکتیو یک نیازمندی کلیدی در حفظ پایداری ولتاژ است منحنی ظرفیت نقش مهمی در این آنالیز دارد.
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:54
توضیحات
انواع ساختا رکلی عرضه یک ساختار 3 فازی. تجزیه و تحلیل مدار برقی در این بخش از ساختر مشابه به مدار برقی به عنوان یک خانواده کلی استفاده کرده است و لتاژ مشابه به فرکانس در ساختر دسته بندی شده در حالت مشابه در این بخش مورد ارزیابی قرار گرفته. هر چند در مورد بار پلی فاز، رابطه بین بار طبیعی و عرضه به منظور کاهش ولتاژ اصلی و متناسب می تواند کاهش یابد، مبدل ثانویه می تواند به منظور ارتقاء فاکتورهای مورد استفاده به منافذ متصل شوند. در این حالت با تجزیه و تحلیلهای خودمان را به منظور افزایش نتیجه ساختار 3 فازی تصدیق می کنیم. زمانی که چند لاکننده یک گرد، خاص بار 3 فازی ارائه می دهد. مجموعه، ولتاژ حاصل در مقایسه با فرکانس زاویه مربوطه به صورت زیر مطرح می شود:Kw,3Kw,5Kw,7Kw,9Kw,11Kw. اگر رابطۀ بین ساختار خشی عرضه، و بار کاهش یابد، یک نوع ساختار خشی عرضه، و بار کاهش یابد، یک نوع ساختار هارمونک 3 ویا کد ساختار چند دلار فاز مربوطه مطرح می شود در این حالت این ساختار در 3 فاز می تواند مدت طولانی تری بماند ولتاژ های V2 , V3 با توجه به گسترش آنها به صورت زیر می توانند مطرح شوند: Kw, 5Kw, 7Kw , 11Kw. به صورت کلّی ،اگر باز فاز q باشد، کاهش خنثی می تواد هارمونیک Kg یا زیاد کند و یا آن را مضاعف کند عدم وجود رابطه خنثی تجزیه و علتهای مضاعف را با مشکل مواجه می کند.در این حالت، ساختارهای اجرایی فازq مدت طولانی تری نمی تواند مستقل بمانند. در نتیجه ما فقط می توانیم فرکانس 3 تایی را با محصول3 فاز مورد تجزیه و تحلیل قرار دهیم. ماهیت و پیچدگی این نوع محاسبات ب انتایج ذکر شده در مورد کنترل کامل و ساختار تنظیم کند 3 فازی قابل مقایسه هستند.
ما بعد آنشان خواهیم داد که، در نهایت، همانطور که نتایج کیفی ساختارها نگران کننده هستند. نتایج به دست آمده به ساختار افزایند. با یک نتیجه 3 فازی که دستان نسبت ساختار مضاعف K از3 متفاوت است، قابل انتقال می باشند. این قبیل ساختارها باعث می شود تا بتوانیم ویژگیهایی برای مقادیر متفاوت K عنوان کنیم.
فرکانس 3 تایی: شکل 613، بیانگر تصویر مدار برقی 3 فاز و فرکانس حاصل است که بدون رابطه ای خنثی بیان شده است و از 3 گرد ساختار6تایی با 3 سیستم متعادل3 فازی با توجه به ولتاژ زمان T و حرکت با فاصله زمان مناسب TA استفاده کرده است.
تجزیه و تحلیل فاصله ای: میزان ارائه ولتاژ P در طول هدایت ساختار T1 شبیه به V3 در طول هدایت T2A است و یا شبیه به V/3 در طول هدایت T است حالا این نوع زمانهایمربوط به هدایت ساختار از طریق 27a جایگزین می شوند، در نتیجه فرمول زیر را داریم:
در حالیکه ان 3 ولتاژ مدت زمانی برابر با دارند نیم چرخه مثبت و منفی آنها از علامت مربوط مجحز است لازم است تا عمفلکرد را در طور 6/1 ولتاژ چرخه مبوط محاسبه کنیم، بدین ترتیب اگررا برای WT بشناسیم و سپس می توانیم ساختارهای را به صورت زیر کاهش دهیم.
جریانهای I3,I2,I1 در یک فاز با 3 ظرفیت، بیانگر رضایت در مورد نیم چرخش متناوب در رابطه متقارن به صورت است. در این حالت می توانیم توصیفات را برای این قبیل جریانها از طریق چرخه آنها با توجه به محاسبه 6/1 چرخه کاهش دهیم. با یک یار که مشکل از 3 مقاومت خالص و برابر با مقدار R ات زمانی که زاویۀ حرکت نا ساختارها افزایش می یابد، 3 عملکرد موفق ممکن است حاصل شود:: 3 یا 2 ساختار تار سیتون وجود دارد که اجرا می شود. زمانی که اجرا می شود، ترسینونهای T2 , TC هنوز در حال اجرا هستند. ساختارهای متقارن ما را قادر می سازند تا ساختار زیر را بنویسیم همانطور که می دانیم V1+V2+V3=0 است می توانیم فرمول را بصورت زیر کاهش دهیم:
در این حالت VA,V2B,V3Cرا با ساختارهای مربوط به آنها به صورت WT جایگزین کنید.سپس فرمول زیر را داریم:
اولین ولتاژ از 3 ولتاژ تولید که به صفر رسیده V/3 است سپس:
در حالی که ظرفیت بار کلاً مقاوم هستند، صفر V3 باتوجه به صفرie مطرح می شود و سپس با T3 می رسد. ترسیتوهای T2BTA به صورت تنها اجرا می شود و میزان ولتاژ فرمول مربوطه به صورت زیر مطرح می شود:
بدین ترتیب و می توانیم ساختار زیر را عنوان کنیم:
این نوع ساختارها و زمان انتهایی زمانی کهT3B اجرا شد. مطرح می شود ،سپس می توانیم یک ترسیتون 3 را با توجه به زمان اجرا وارد کنیم. در طول اولین زمان اجرا، زاویه اجرا باید به منظوراطمینان حاصل کردن از این مسئله که بیشتر از یک تولینور در هر فاز اجرا نمی شود به حد کافی بزرگ باشد. در این حالت قبل از اجرای T/A، لازم است صبر کنیم تا T( خاموش شود) از اجزا نشود. 2 قبل از متوقف شده TSC مطرح شود برای مثال زمانی کهWT=112122 است این نوع اولین ساختاری زمانی ناپدید می شود کهT/A تا زمانی که T3C خاموش نشده اجرا نمی شود برای مثال برای مقدار بیشتر از132122 مطرح شده است. در این حالت می توانیم نحوه عملکرد را برای مقادیر زیر عنوان کنیم.
مغناطیس
محور مغناطیس
محوری است که محوردو قطب آهن ربا را به گونه ای به هم وصل می کند خاصیت مغناطیسی در اطراف آن کاملا متقارن است
مغناطیس
منشا تولید مغناطیس حرکت الکترونها است به عبارتی اگر الکترونی از نقطه ای به نقطه دیگر جابجا شود در اطراف آن خاصیت مغناطیس ایجاد می شود
دو قطبی مغناطیسی
میدان مغناطیسی حاصل از حرکت یک عدد الکترون را اصطلاحا دو قطبی مغناطیسی می گویند
در داخل یک میله دو قطبی های مغناطیسی فراوانی وجود دارد که هر کدام در جهت ها و راستاهای مختلفی در حال چرخش هستند که آنها میتوانند دو به دو اثر مغناطیسی یکدیگر را خنثی کنند
در داخل، میله مجموعه دو قطبی های یکسان تشکیل یک حوزه مغناطیسی را می دهد که هر حوزه برای خود میدان مغناطیسی ای را دارا می باشد که در حالت عادی دو قطبی های موجود در حوزه ها حرکتی کاتوره ای و بی نظم دارندحال اگربتوان به روش خاصی دوقطبی های موجود در حوزه ها را به صورت منظم مرتب کرد وتمام آنها را یک سر نمود در میله خاصیت مغناطیسی مشهود می گردد
زاویه میل مغناطیسی
زاویه ای است که خطوط میدان مغناطیسی زمین در هر نقطه باراستای افق می سازد که درنقاط مختلف زمین باهم فرق می کند
مواد
مواد به دودسته مغناطیسی تقسیم می شود
الف- مواد غیرمغناطیسی
موادی هستند که به هیچ وجه نمی توان خاصیت مغناطیسی در آنها به وجودآورد به عبارتی دو قطبی های موجود درآنها تحت هیچ شرایطی ازحالت کاتوره ای خارج نمی شودمانند شیروچوب و....
ب-مواد غیر مغناطیسی
موادی هستند که تحت شرایط معینی میتوان دو قطبی های موجود درآنها را از حالت کاتوره ای خارج نمود وبه آنها نظم داد به عبارتی می توان خاصیت مغناطیسی در آنها به وجود آورد مانند آهن
موادمغناطیسی به سه دسته تقسیم می شوند
الف - مواد فرومغناطیسی نرم
ب - موادفرومغناطیسی سخت
ج - پارا مغناطیس
الف-مواد فرو مغناطیسی نرم
مانند آهن خالص این گونه مواد اگر در یک میدان مغناطیسی واقع شوند دو قطبی های موجود در حوزه ها سریعا از حالت کاتوره ای خارج شده ومنظم می شوند و خاصیت مغناطیسی قوی در اطراف آن مواد به وجود می آید ولی به محض آن که این مواد ازمیدان مغناطیسی القا کننده خارج شوند دو قطبی ها سریعا به وضعیت کاتوره ای اول خود بر می گردند وخاصیت مغناطیسی دراین موادسریع ازبین می رود کاربرد در زنگ اخبار و جرثقیل الکتریکی( برای هسته سیم لوله ها )
ب- مواد فرو مغناطیسی سخت
مانند فولادموادی هستندکه اگردریک میدان مغناطیسی واقع شوند تعدادی ازدوقطبی های موجود تحت تاثیرمیدان القا کننده قرار گیرندوبه کندی یک سومی شوند درنتیجه خاصیت مغناطیسی ضعیفی دراطراف این موادبه وجودمی آیند حال اگرمیدان القا کننده برای این مواد حذف شود دو قطبی های نظم یافته به حالت اولیه خود بر نمی گردند بنابراین خاصیت مغناطیسی در این مواد پایدارمی ماندکاربرد درقطب نما ها بلند گوها آرمیچرها
ج-پارامغناطیس
این مواد اگر دریک میدان مغناطیسی خیلی قوی قرار گیرند تعداد اندکی از دوقطبی های آنها منظم می شوند( به کندی ) وخاصیت مغناطیسی ضعیفی دراطراف آن ایجاد می شود حال اگرآن میدان قوی حذف شود دوقطبی های نظم یافته سریع به وضعیت اولیه خود برمی گردندوخاصیت مغناطیسی به وجودآمده راسریع ازدست می دهند فلزاتی مانند پلاتین آلو مینیم قلع وهم چنین فلزات قلیایی- قلیایی خاکی -اکسیژن واکسیدازت نیزجزاین مواد هستند
خاصیت مغناطیسی یک آهن ربا راتا بی نهایت نمی توان اضافه کرد زیرا دوقطبی های موجود در حوزه ها هنگامی که تماما یک سو شوند درآن صورت گفته می شود که آهن ربا از نظر خاصیت مغناطیسی اشباع شده است یا به عبارتی سیر شده است
برای از بردن خاصیت مغناطیسی در یک آهن ربا دوروش مطرح است
روش اغول به این صورت است است که آهن ربا راگرم می کنیم وبه دنبال آن ضربه هایی به آن وارد می سازیم که به دنبال آن باعث می گردد در اثر گرم شدن وضربه خوردن دو قطبی های مغناطیسی نظم یافته از حالت نظم خارج گردند وبه حالت کاتوره ای وبی نظمی برسنداین روش روشی پسندیده است زیرا در اثر ضربه شکل ظاهری آهن ربا نیز تغییر می کند روش دیگر استفاده از سیم پیچ حامل جریان متناوب است که آهن مورد نظر در داخل آن سیم لوله درراستای مشرق- مغرب قرارمی گیرد تا میدان مغناطیسی زمین بر روی آن اثر نداشته باشد (خطوط میدان مغناطیسی زمین در راستای جنوب به شمال زمین است) بهتر است برای انجام این آزمایش آهن ربا رادر داخل سیم لوله حرکت رفت وبرگشت داشته باشد
میدان مغناطیسی
فضای محدود در اطراف یک آهن ربا است که در آن فضا خاصیت مغناطیسی محسوس باشد به عبارتی اگرآهن ربای دیگری در آن محدوده واقع شود بر آن نیروی مغناطیسی وارد شودمیدان مغناطیسی را می توان با خطوط نیرویی نمایش داد برای این منظورسه روش زیر مطرح است
الف- تشکیل طیف مغناطیسی توسط براده آهن
در این روش آهن ربایی را اختیار کرده بر روی یک سطح صاف قرار داده وبر روی آن کاغذ سفیدی قرار می دهیم مقداری براده آهن بر روی کاغذ می ریزیم وباضربه های ملایمی که به کاغذوارد می سازیم باعث می شود که براده های آهن بر روی مسیرهای مشخصی شکل گیری نماید وتوسط خود خطوطی تشکیل دهند که هر خط نیرو می باشد
ب- باتوجه به حرکت چوب پنبه درآب
ظرف پر از آبی را اختیار کرده ویک آهن ربای تیغه ای بر روی لبه آن قرار می دهیم سوزنی را آهن ربا نموده وبه طور قا ئم آن را در چوب پنبهای قرار می دهیم وچوب پنبه را در آب به گونه ای شناور می سازیم که قطب(ان) آن در مجاورت (ان) تیغه قرار گرفته شود اگر در آن صورت چوب پنبه رها شود مشاهده می گردد که به واسطه نیروی دافعه چوب پنبه از آن قطب دفع شده است وبادور شدن ازآن قطب به قطب (اس) تیغه نزدیک می شود مسیری که چوب پنبه
طی کرده است به عنوان خط نیرو معیین می شود (بر هم کنش قطب های آهن ربا به طور کلی قطب های هم نام در دو آهن ربا همدیگر را می رانند ولی قطب های ناهم نام همدیگررا می ربایند
ج-به کمک عقربه مغناطیسی وبا استفاده از نقطه یابی
آهن ربایی را بر روی سطح افق فرار داده وکاغذ سفیدی راروی آن می گذاریم یک عقربه مغناطیسیرا بر روی کاغذ در مجاورت قطب (ان) تیغه قرار می دهیم در آن حالت در امتدادنوک عقربه که قطب ( ان) است توسط مداری بر روی کاغذ علامت می گذاریم سپس عقربه را بر روی کاغذ جابجا کرده به طوری که انتهای آن(قطب اس) منطبق بر آن علامت گردد وبرای دفعه دوم نیز درامتداد قطب (ان) بر روی کاغذ علامت می گذاریم واین عمل را تکرار می کنیم که نهایتا به قطب (اس) آهن ربا نزدیک می شویم حال اگر نقاط به دست آمده را به هم وصل نماییم خط به دست آمده معرف خط نیرو است با توجه به روش های بالا طبق قرارداد خطوط میدان مغناطیسی در اطراف آهن ربا از قطب(ان) به قطب(اس) آن است
نام گذاری قطب های آهن ربا
هرگاه آهن ربایی راتوسط نخی به قلابی آویزان نماییم پس ازایستادن آهن ربا درراستای شمال-جنوب زمین واقع شده است زیرا تحت تا ثیر میدان مغناطیسی زمین واقع میشود آن قطبی که به سمت شمال زمین واقع شده است به عنوان شمال یاب آن را قطب (ان ) می نامیم و قطبی که به سمت جنوب زمین واقع شده است به عنوان جنوب یاب قطب(اس) نامیده می شود
قطب های اهن ربا مکانی از آهن ربا هستند که بیشترین خاصیت مغناطیسی رادارا هستند مثلا در تشکیل طیف مغناطیسی تجمع براده آهن در قطبین بیشتر است
آهن ربا کردن یک میله مغناطیسی
روش اول : استفاده از یک آهن ربای معلوم به روش القا در این روش یکی از قطب های آهن ربارا به یک سر میله نزدیک می کنیم وجود میدان مغناطیسی دراطراف آن آهن ربا بر دو قطبی های موجود در حوزه های مغناطیسی آن میله اثر گذاشته وآنها رادر جهت خود هم سو می کند در نتیجه آن میله آهن ربا شده وآن سر میله قطبی می گردد که غیر هم نام با قطب آهن ربایی است که به آن نزدیک شده وچون قطب های غیر هم نام همدیگر را می ربایند آن میله جذب آهن ربا می شود
روش دوم : دراین روش سیم پیچی (سیم لوله) اختیار کرده ودر آن جریانی مستقیم می فرستیم میله مورد نظر رادر داخل آن سیم لوله قرار می دهیم میدان مغناطیسی حاصل از سیم لوله که در داخل سیم لوله قوی و یکنواخت است با اثرگذاشتن بر روی دو قطبی های موجود در آن میله باعث یک سو شدن آنها می شود در نتیجه میله آهن ربا می شود برای تشخیص قطب های میله آهن ربا شده دو روش زیر مطرح است
الف : سطح مقطع یک طرف سیم لوله را نگاه می کنیم اگردر آن حالت جهت چرخش جریان موافق حرکت عقربه های ساعت باشد آن قطب (اس) است ولی اگر جهت چرخش جریان مخالف حرکت عقربه های ساعت باشد آن قطب (ان) است
جهت انحراف یک ذره باردار متحرک در یک میدان مغناطیسی
هر گاه یک ذره متحرک در میدان مغناطیسی باشرط خاصی حرکت کند از طرف آن میدان بر آن ذره نیرویی وارد میشود که باعث انحراف ذره می شود که جهت آن نیرو به سه عامل زیر بستگی دارد:
الف - نوع بار ذره ب - جهت میدان مغناطیسی ج - جهت حرکت ذره
برای تعیین جهت انحراف ذره دو دستور زیر را در نظر می گیریم
الف - نوع بار ذره مثبت باشد
برای این منظور دست راستمان را به گونه ای می گیریم که انگشت شست بر چهار انگشت دیگر عمود باشد در آن فضای مغناطیسی دستمان را به گونه ای می گیریم که چهار انگشت موازی در جهت حرکت ذره واقع شود وپشت دست به طرف قطب(ان) وکف دست به طرف قطب (اس) واقع باشد در این حالت انگشت شست جهت انحراف ذره مثبت را نشان می دهد
ب - نوع بار ذره منفی باشد
برای این منظور دست چپ را اختیار کرده و دستور بالا را به کار می بریم
اندازه نیروی وارد بر یک ذره متحرک در یک میدان مغناطیسی
نیرویی که در یک میدان مغناطیسی بر یک ذره وارد می شود به عوامل زیر بستگی دارد
الف - اندازه بار الکتریکی
ب- سرعت ذره
ج - شدت میدان مغناطیسی
د- زاویه بین راستای حرکت ذره با راستای خطوط میدان
F=q × v × B Sin()
*** در چه صورت بر یک ذره متحرک نیرو به آن وارد نمی گردد؟
در صورتیکه ذره موازی میدان (در جهت ویا در خلاف جهت) حرکت کند
***در چه صورت بر ذره متحرک نیروی بیشینه وارد می شود؟
در صورتی که زاویه نود یعنی ذره عمود بر خطوط میدان حرکت کند
تعریف تسلا
تسلا شدت میدان مغناطیسی است که اگر یک ذره (کولن) عمود بر خطوط آن میدان با سرعت یک متر بر ثانیه حرکت کند آن گاه از طرف آن میدان نیرویی به اندازه یک نیوتن بر آن ذره وارد می شود
B=F /q×v 1 (T) =1(N) /1(c) ×1(m/s)
تعیین جهت انحراف یک سیم حامل جریان در یک میدان مغناطیسی
هر گاه سیمی حامل جریان تحت شرایطی در یک میدان مغناطیسی واقع شود از طرف آن میدان نیرویی بر آن سیم وارد شده و باعث انحراف آن سیم در میدان مغناطیسی می گردد که اگر جریان مستقیم باشد جهت انحراف سیم ثابت بوده در یک جهت منحرف می شود ولی اگر شدت جریان در سیم متناوب باشد نیروی وارد بر سیم نیز متناوب است وسیم در آن میدان مغناطیسی شروع به نوسان کردن و لرزیدن می کند
جهت نیرویی که از طرف میدان مغناطیسی بر یک سیم حامل جریان وارد می شود به دو عامل زیر بستگی دارد
الف - جهت شدت جریان در سیم
ب - جهت میدان مغناطیسی
برای تعیین جهت انحراف سیم از قانون دست راست با دستور زیر استفاده می کنیم
دست راستمان را به گونه ای می گیریم که انگشت شست بر چهار انگشت دیگر عمود باشد
اگر در آن میدان مغناطیسی پشت دست به طرف قطب(ان) و کف دست به طرف قطب (اس) چنان قرار گیرد که چهار انگشت موازی در جهت شدت جریان واقع شود در آن صورت انگشت شست جهت انحراف سیم را نشان می دهد
اندازه نیروی وارد بر یک سیم حامل جریان در یک میدان مغناطیسی
عوامل موثر
الف - شدت میدان مغناطیسی
ب - شدت جریان در سیم
ج - طول سیم
د - زاویه راستای سیم و راستای خطوط میدان
F= B×I ×L Sin()
آزمایش
همانگونه که در بالا توضیح داده شد اگر یک سیم در میدان مغناطیسی واقع شود از طرف آن میدان نیرویی بر آن سیم وارد می شود عکس آن نیز صادق است یعنی سیم حال جریان در اطراف خود میدان مغناطیسی به وجود می آورد که وجود آن میدان را می توان توسط عقربه مغناطیسی و یا براده آهن نشان دهیم شخصی به نام اورستد در مجاورت یک سیم حامل جریان یک عقربه مغناطیسی قرار داد او مشاهده کرد عقربه از راستای خود منحرف شده و در یک جهتی واقع می شود همچنین اگر سیمی رااز وسط مقوایی عبور داده و جریانی در آن بر قرار سازیم و آن را به طور قائم نگه داشته و مقداری براده آهن بر روی مقوا بریزیم ملاحظه می گردد که براده ها در اطراف سیم مقوا مسیرهای دایره شکلی را تشکیل می دهند که تماما هم مرکز بوده و سیم از مرکز آنها گذشته است در این آزمایش مشاهده می گردد که در نزدیکی سیم تجمع براده آهن بیشتر از قسمتهای دیگر است یعنی هر چه از هر از سیم دور تر می شویم تجمع براده ها کمتر است
این آزمایش سه نکته را به ما نشان می دهد
اولا- خطوط میدان مغناطیسی در اطراف یک سیم حلقه ای شکل بوده که سیم بر سطح آن حلقه و از مرکز آنها گذشته است
ثانیا - شدت میدان مغناطیسی در نزدیک سیم بیشتر و در فواصل دور تر کمتر است
ثالثا - هر چه شدت جریان در سیم بیشتر شود میدان در اطراف سیم بیشتر می شود
برای تعیین جهت خطوط میدان مغناطیسی در اطراف یک سیم از قانون دست راست با دستور زیر استفاده می کنیم
دست راستمان را به گونه ای می گیریم که انگشت شست بر چهار انگشت دیگر عمود باشد هرگاه کف دستمان را بر روی سیم چنان قرار دهیم که انگشت شست در جریان قرار گیرد آن گاه جهت بسته شدن چهار انگشت دیگر جهت میدان مغناطیسی می باشد
شدت میدان مغناطیسی یک سیم حامل جریان
در اطراف یک سیم با توجه به توضیحات بالا شدت میدان از رابطه زیر به دست می آید
شدت جریان بر حسب آمپر
فاصله بر حسب متر
قابلیت گذردهی مغناطیسی هوا
نکته
در صورتی که جهت جریان در دو سیم یک سو باشد نقطه مورد نظر بین دو سیم و نزدیکتر به سیم حامل جریان کمتر است ولی اگر جهت جریان ها یک سو نباشدنقطه مورد نظر خارج از فضای دو سیم و نزدیکتر به سیم حامل جریان کمتر است
میدان حاصل از دو یا چند سیم راست
اگر دو یا چند سیم حاوی جریان در کنار هم باشد شدت میدان حاصل در هر نقطه از فضای
اطراف برابر است با برآیند میدانهای حاصل از هر یک از سیمها
اگر از دو سیم راست موازی جریانهای هم جهت عبور کند میدانهای حاصل از دو سیم خلاف جهت هم و در خارج فاصله دو سیم هم جهت است و بر عکس
اندکسیون حاصل از سیم A =B1
اندکسیون حاصل از سیم B = B2
برآیند حاصل
B =B2-B1