عنوان مقاله : بررسی دره سیلیکون و رمز موفقیت آن
قالب بندی : Word
47 صفحه
شرح مختصر :
تا به حال شده است که به این موضوع فکر کنید که شعبه اصلی این همه شرکت فناوری در کجا قرار دارد؟ یا اصلا شروع به کار این دسته از شرکتها به چه صورتی بوده و از چه محلی آغاز شده است؟ مسلماً هر شرکت فناوری یک نقطه شروع برای فعالیتهایش داشته و پس از آن به تدریج کارش را گسترش داده است. شاید شما هم تا به حال نام درهی سیلیکون را شنیده باشید، محلی که همه مردم دنیا آن را به عنوان محل تولد فناوریهای نوین میشناسند. بدون شک بسیاری از شرکتهایی که پایهی جهان فناوری را گذاشتند در درهی سیلیکون متولد شدند و شاید بتوان گفت که اهمیت زیاد این دره به همین خاطر است. در این نوشته قصد داریم به این موضوع اشاره کنیم که چرا از بین این همه شهر و منطقه، باید این دره به مرکز اصلی شرکتهای فناوری تبدیل شود، کلید اصلی موفقیت این دره چیست؟ در کل هدف از نوشته حاضر، نگاهی است بر آنچه باعث شد درهی سیلیکون مرکز اقتصاد اینترنت جهان و موفقترین منطقه تولید کننده فناوریهای برتر در جهان باشد و به نوعی ریشهی تمامی فناوریهای جهان قلمداد شود. در آخر سعی میکنیم تهدیدات و موانع پیش روی آن را بررسی کنیم.
فهرست :
چکیده
مقدمه
بیان موضوع
فصل دوم
تاریخچه
تولد جهان فناوری در یک دره
از قوانین تا راه گاراژ
یک پدر خوب برای یک دره
وجه تسمیه
چگونه سیلیکون به دره آمد
رمز موفقیت درهی سیلیکون
روزهای اولیه
پنج قانون
عامل ناشناخته
ارتباطات انسانی
تنوع فرهنگی در درهی سیلیکون
تهدیدات پیش روی درهی سیلیکون
چیزهایی که درهی سیلیکون نمیخواهد بداند
سانفرانسیسکو و شکاف طبقاتی
رؤیای عامه پسند
طرح FWD.us
فصل سوم
تحلیل و نتیجه گیری
منابع
در این تحقیق استراتژی بازاریابی مورد بررسی و پژوهش قرار گرفته است
در زیر به مختصری ازعناوین و چکیده آنچه شما در این تحقیق دریافت می کنید اشاره شده است :
استراتژی بازاریابی
بهترین استراتژی بازاریابی الکترونیکی: ارتباط مناسب و دائم با مشتریان بر خط اکنون زمان بسیار خوبی جهت استفاده از بازاریابی الکترونیکی است. روش های قدیمی بازاریابی درحال تغییر و تحول است چرا که تعداد کاربران و در نتیجه مشتریان بر خط و همچنین خدمات و محصولات مرتبط با آنها، هر روز در حال گسترش است. بهترین روش ها جهت رسیدن به این مشتریان بالقوه بر خط چیست؟
1- بازاریابی پست الکترونیک. هرروز بیش از 900 میلیون نفر از پست الکترونیک جهت ارسال و دریافت پیام استفاده می کنند. هنوز موثرترین روش رسیدن به تعداد انبوه مشتریان بالقوه و تقویت ارتباط با آنها، استفاده از پست الکترونیک است. طراحی و ارسال خبرنامه های الکترونیکی از مهم ترین و شاید حیاتی ترین نیازهای تجارت های برخط است و ابزار ها و روش های تولید و ارسال خبرنامه ها، بسیار قدرت مند شده اند.
2- وبلاگ نویسی. تا قبل از پدیده وبلاگ، مشتریان امکان و توفیق ارتباط نزدیک با ارائه کنندگان خدمات و محصولات را نداشته اند. وبلاگ نویسی، به ایجاد اعتماد،کمک زیادی می کند و به مشتریان اجازه می دهد با بالاترین رده های مدیریتی شرکت ها، ارتباط نزدیک برقرار کنند. وبلاگ نویسی به بازاریاب ها کمک می کند که داستان خود را در یک محیط باز و غیر رسمی که برای مشتریان حالت شخصی دارد، بیان کنند و بتوانند برای ارائه کننده خدمات،کف بزنند یا شکایت کنند.
3- آر اس اس. سالها قبل می بایست وب سایت های متعددی را بازدید می کردیم تا بتوانیم اطلاعات مرتبط با خودمان را پیدا کنیم. امروزه، اطلاعات به روز و مرتبط، از طریق RSS به طور مرتب و روزانه از طرف اینترنت برای ما ارسال می شوند. مشتریان می توانند جهت دریافت اطلاعات مرتبط با خودشان، آبونه شوند و این اطلاعات را به محض به روز رسانی شدن، دریافت کنند و در زمان و نیروی خود صرفه جویی نمایند.RSS به بازاریاب ها کمک می کند تا یک جریان دائمی از اطلاعات به روز را از طریق اینترنت به مشتریان خود برسانند.
4- Podcasting . هر چند که توقع می رود تا سال 2010 این روش بازاریابی به استفاده انبوه برسد ولی امسال نیز رشد حوبی داشته است. ما دوست داریم به دیگران گوش دهیم و بشنویم. تا قبل از این، اینترنت مجموعه عظیمی از متن بود که از بس به آنها نگاه می کردیم، خسته می شدیم. امروز می توانیم به متخصصین صنعت در موضوعات خاص و به مصاحبه های آنها با میهمانانشان و دریافت ترفندهای مفید، گوش دهیم. پادکست به ما کمک می کند تا محتوای اینترنت را در خانه، محل کار و یا حتی در حال مسافرت در قطار، هواپیما، و یا حتی کوهنوردی، استفاده کنیم.
این فایل شامل : صفحه نخست ، فهرست مطالب و متن اصلی می باشد که با فرمت ( word ) در اختیار شما قرار می گیرد.
(فایل قابل ویرایش است )
تعداد صفحات :20
فرمت فایل : ورد قابل ویرایش
تعداد صفحات: 62
فهرست مطالب:
تعاریف و توزیعهای آماری
تعریف علم آمار
واریانس
خواص واریانس
انحراف معیار
ضریب همبستگی
استاندارد کردن ضریب همبستگی
فضای نمونه یا فضای حوادث
فراوانی مطلق و نسبی
تعریف احتمال برمبنای فراوانی نسبی
تعریف کلاسیک احتمال
قضایای مربوط به احتمال
احتمال هندسی
احتمال مشروط
تعریف محتمل ترین حادثه :
کابرد آزمون در همبستگی نسبتها
کاربرد برای آزمون نرمال بودن توزیع :
مشخص کننده های عددی قانون توزیع کمیت تصادفی
امید ریاضی کمیت تصادفی نا پیوسته :
امید ریاضی کمیت تصادفی پیوسته
خواص امید ریاضی
تعاریف و تنظیم داده های آماری :
1- تعاریف و توزیعهای آماری
1-1- تعریف علم آمار :
قبل از آنکه علم آمار تعریف گردد لازم است کمی راجع به تاریخچه آن سخن به میان بیاید تاریخچه علم آماررا می توان از بدو تشکیل دولتها آغاز کرد ، زیرا کلمه آمار Statusticesاز کلمه State به معنی دولت گرفته شده است . دولتهای اولیه نیز برای پی بردن به سلطه و قلمروخود احتیاج به آن داشتند . البته در آن زمان منظور از آمار ارقام و اطلاعات مورد نیاز دولتها برای گرفتن مالیات و سربازی و سایر امور مربوطه به کشورداری و سیاست بوده است .
از چند هزار سال قبل از مسیح در کشورهای مصر و چین و هندوستان قدیم سرشماری نفوس و همچنین اندازه میزان – دارائی تحت نفوذ دولتها انجام گردیده است و یا اینکه اغلب به طور ناقص انجام گردیده است ، با این حال همین شمارشهای ابتدائی پایه و اساس آمار امروزی را بنیان نهاده است ولی تقریباً در نیم قرن اخیر همراه با سایر علوم ، علم آمار نیز سیر صعودی را پیموده و گاهی پیشتاز و پیش قراول بعضی از علوم بوده است ، که با استفاده از آن بود که اغلب علوم چند برابر سرعت سیر عادی خود را گرفتند ، زیرا روشها و فنونی که برای تحقیقات علمی ضروری هستند از علم آمار بدست میآید ، بخصوص در علوم فیزیکی و زیست شناسی و اجتماعی و اقتصادی بکار برده می شود . ناگفته نماند گاه ممکن است که یک روش معین تنها به منظور استفاده در یک رشته خاص پژوهش علمی طرح ریزی شده باشد . این بدان معنی نیست که در آن رشته بخصوص آمار کاربرد زیادی دارد .
از آنجائیکه علم آمار ریشه و علایقش به کلیه علوم بشری رسیده است ، امروزه در تمامی دانشگاههای جهان در اکثر رشته های مختلف دانشگاهی اعم از رشته های پزشکی ، فنی ، کشاورزی و برنامه ریزی و… تدریس می شود . برای آنکه هدف این درس بهتر معلوم شود ، لازم است بدواً علم آمار را تعریف نمائیم .
حال چند تعریف را از بین کلیه تعاریف که جامع تر به نظر می آید بیان می کنیم . لازم به تذکر است که برای علم آمار تعاریف زیادی شده است .
- آمار علمی است که خواص جامعه را مورد بررسی قرار می دهد .
- آمار علمی است که مشخصات جامعه ها را به صورت کمی ولی بادر نظراوضاع کیفی آنها مورد بررسی قرار میدهد .
- آمار علمی است که اصول وروش جمع آوری اطلاعات آماری ، نمایش دادن آنها ، تجزیه و تحلیل و استنتاج آماری را مورد بحث قرار میدهد .
4-3- واریانس 1
در میانگین قدر مطلق انحرافات برای اینکه انحرافات مثبت و منفی یکدیگر را خنثی نکنند آن را به صورت قدر مطلق بیان کردیم . این منظور از راه مجذور کردن انحرافات نیز ممکن بود تا فرمول از حالت جبری خارج نشود . بدین طریق مشخص کننده جدیدی از پراکندگی که از هر حیث بر مشخص کننده های قبلی برتری دارد بدست خواهد آمد که آن را واریانس می نامند و یا ، نمایش می دهند . ( واریانس واقعی جامعه را با نشان می دهند )
و عادتاً در این کتاب آن را با نشان خواهیم داد .
*مقاله وکالت زوجه در طلاق و تفویض حق طلاق به او*
تعداد صفحات: 20
فرمت فایل: word
مقدمه:
یکی از موضوعات مهم ومورد ابتلا که در فقه اسلامی و حقوق مدنی مورد بحث و بررسی واقع شده وکالت زوجه در طلاق است. ممکن است ضمن عقد نکاح یا عقد لازم دیگر یا به صورت قراردادی مستقل شوهر به زن وکالت دهد که از طرف او خود را مطلقه سازد . زوجه برای اینکه به آسانی بتواند خود را از قید یک ازدواج نامناسب رهایی بخشد، می تواند از طریق شرط ضمن عقد نکاح چنین اختیاری را برای خود تحصیل کند. در این صورت وکالت زن، مادام که ازدواج منحل نشده باقی خواهد ماند. واز انجا که عقد وکالت در اینجا تابع عقد لازم (ازدواج) شده موکل حق عزل وکیل را نخواهد داشت . این راه حل که در حقوق اسلام و ایران به سود زن پذیرفته شده در واقع، اختیار مطلق مرد در امر طلاق را تا حدودی تعدیل می کند.
قبل از بحث تفصیلی از این موضوع بجاست مقدمتا از وکالت در طلاق به طور مطلق به اختصار سخن می گوییم. قول مشهور فقهای امامیه این است که وکالت در طلاق جایز است، اعم از اینکه موکل در مجلس طلاق(یا در بلد) حاضر یا غایب باشد. در تائید این نظر به اطلاق پاره ای روایات واخبار از جمله صحیحه سعیدالاعراج استناد شده و نیز استدلال شده است به اینکه طلاق یک فعل نیابت است و به اصطلاح امروز یک امر کاملا شخصی نیست که مباشرت در آن لازم باشد و به همین دلیل به اجماع می تواند برای طلاق وکیل بگیرد و تفاوتی بین حاضر وغایب از این لحاظ نیست.
شیخ طوسی و پیروانش برانند که توکیل حاضر حاضر در طلاق جایز نیست و در این باره به رواین زراره از حضرت صادق (ع) استناد کرده اند که فرمود: لا یجوز الوکاله فی الطلاق (وکالت در طلاق جایز نیست). شیخ برای جمع بین این روایت و روایات دیگری که بر صحت وکالت در طلاق دلالت دارند روایت مزبور را حمل بر حاضر کرده است.
در رد این استدلال گفته اند: سند این روایت ضعیف است و از این رو نمی تواند معارض صحیحه سعیدالاعراج باشد و آن را تخصیص دهد.
ک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:30
فهرست مطالب ندارد
احتمال و احتمال شرطی
مدل احتمال شرطی
اگر A و B دو پیشامد از فضای نمونه ای S باشند و ، و بدانیم آگاهی از رخداد حتمی پیشامد B در مقدار احتمال سایر پیشامدها اثر می گذارد، احتمال پیشامد A به شرط این که پیشامد B رخ دهد به صورت زیر تعریف می شود:
قاعده ضرب احتمال
این رابطه به قاعده ضرب احتمال موسوم است. به کمک این قاعده می توان احتمال رخداد هم زمان دو پیشامد را تعیین کرد.
استقلال دو پیشامد
اگر آگاهی از رخداد پیشامد B در احتمال رخداد پیشامد A مؤثر نباشد، A را مستقل از B میگویند. پس:
احتمال تجربی
مجموعه ی همه ی نتایج ممکن در یک آزمایش تصادفی، فضای نمونه ای نامیده می شود.
نسبت «رو» هایی که در آزمایش پرتاب سکه به دست آمد، همان فراوانی نسبی است.
اگر داده های حاصل از آزمایش در محاسبه ی احتمال مورد استفاده قرار گیرد به احتمال تجربی یا تخمین احتمال گویند.
مثال: از 50 بار پرتاب یک سکه 30 بار رو ظاهر شده است تخمین احتمال رو آمدن سکه کدام است؟
به احتمال هایی که در آن پیشامدها به طور ایده آل رخ می دهند و داده های حاصل از آزمایش در آن نقشی ندارند احتمال نظری گفته می شود و در این حالت نتایج آزمایش هم شانس هستند.
مثال: در پرتاب یک تاس احتمال آمدن عدد بزرگتر از 4 کدام است؟
توضیح بهتر اینکه:احتمال نظری به احتمالهایی گفته می شود که به کمک آنچه که به طور ایده آل باید رخ دهد تعیین می گردند و داده های حاصل از آزمایش در آن نقشی نداشته باشند. برای مثال در پرتاب یک سکه فضای نمونه به صورت {پ و ر}=S می باشد که احتمال «رو» آمدن سکه و احتمال «پشت» آمدن سکه نیز است. این دو عدد احتمال نظری می باشند.
همچنین در پرتاب یک تاس فضای نمونه به صورت {6و5و4و3و2و1}=S می باشد که احتمال آمدن عدد3، می باشد، که این عدد احتمال نظری ظاهر شدن عدد3 می باشد.
احتمال تجربی: اگر یک سکه سالم را 100 بار پرتاب کنیم و از این 100 بار 55 بار «رو» ظاهر شود کسر را احتمال تجربی (تخمین احتمال) رو آمدن در این 100 بار آزمایش می گوییم همچنین اگر یک تاس را 30 بار پرتاب کنیم و 5 بار عدد 2 ظاهر شده باشد کسر را احتمال تجربی ظاهر شدن عدد 2 در این 30 بار آزمایش می گوییم
ظهور احتمال
اما ظهور احتمال به صورت یک نظریه ریاضی نسبتاً جدید است.
مصریان قدیم در حدود ۳۵۰۰ سال قبل از میلاد برای بازی از چیزی که امروزه آن را "قاپ" مینامند و شیئی استخوانی شبیه تاس چهار وجهی است استفاده میکردندکه در استخوان زانوی پای بعضی از حیوانات وجود دارد.
تاس شش وجهی معمولی در حدود سالهای ۱۶۰۰ بعد از میلاد ساخته شد و از آن به بعد در تمام انواع بازیها ابزار اصلی بوده است.
بدیهی است که ضمن انجام بازیهای تصادفی ،بازیکنان این بازیهادرباره فراوانی وقوع پیشامدهای معین و درباره احتمال آنها ایدههای شهودی به دست آوردند اما تعجب اینکه تا قرن پانزدهم هیچگونه بررسی علمی در مورد پیشامدهای تصادفی انجام نشد.
گذر از احتمال کلاسیک
اوایل تئوری احتمالات به یک تعداد متناهی از نتایج یک امتحان دو شقی محدود شده بود.قانون محاسبه احتمال،در اصل بسیار ساده بود:
یک پیشامد مرکب،تعدادی پیشامد اولیه را شامل میشود.احتمال آن پیشامد مرکب برابر است با حاصل جمع احتمالات آن پیشامدهای اولیه.برای تعیین احتمالهای پیشامدهای مرکب،پیشامدهای اولیه باید احتمالهایی داشته باشند.طرح های تخمینی بر اساس پیشامدهای اولیه متقارن بنیان نهاده شده بودند.در نتیجه اگر تعداد پیشامدهای اولیه m بود،تقارن نتایج یک بازی به معنی زیبا بودن آن بازی بود.
محاسبات کلاسیک احتمالات که بسیار محدود بودند،بر پایهء تفسیر کلاسیک احتمال انجام میشدند.
تعبیر امواج دوبروی با نظریه احتمال
بر اساس اصل عدم قطعیت هایزنبرگ در مکانیک کوانتومی نمیتوان در مورد پدیدهها با قطعیت کامل اظهار نظر نمود و لذا نتیجه اندازه گیریها و آزمایشهای مختلف بوسیله نظریه احتمال تعبیر میشود. از جمله مفاهیمی که در تعبیر و توصیف آنها از نظریه احتمال استفاده میشود، تعبیر امواج دوبروی میباشد. امواجی که به ذرات مادی نسبت داده میشود.
تعبیر طبیعت موجی ذرات مادی برحسب احتمالات ، نخستین بار در سال 1926 توسط ماکس بورن ارائه شد. آن شاخه از فیزیک کوانتومی که مسئله یافتن مقادیر توابع موجی را بررسی میکند، مکانیک موجی یا مکانیک کوانتومی نام دارد. مبتکران اصلی مکانیک موجی ذرات اروین شرودینگر و ورنر هایزنبرگ بودند که بهصورت مستقل مکانیک کوانتومی را با صورتهای ریاضی مختلف ، ولی همارز ، فرمولبندی کردند.
ارتباط مدل موجی و ذرهای بوسیله نظریه احتمال
از الکترومغناطیس میدانیم که میدان موج وابسته به یک فوتون میدان الکترومغناطیسی است. تابش الکترومغناطیسی در بعضی موارد با استفاده از مدل ذرهای و در موارد دیگر به کمک مدل موجی توصیف میشود. شدت تابش ، کمیتی است که در هر دو مدل به یک معنی است.با این تفاوت که در مدل ذرهای ، شدت تابش با تعداد فوتونها متناسب است، ولی در مدل موجی شدت تابش با مجذور میدان الکتریکی متناسب میباشد. از طرف دیگر ، احتمال مشاهده هر فوتون در هر نقطه با تعداد فوتونهایی که به آن نقطه میرسند، متناسب است. چون اگر فوتونی در آن نقطه وجود نداشته باشد، در این صورت احتمال وجود فوتون صفر خواهد بود.
بنابراین با استفاده از تعریف ارائه شده برای شدت در هر دو مدل موجی و ذرهای ، میتوان چنین نتیجه گرفت که احتمال مشاهده یک فوتون در هر نقطه از فضا با مجذور شدت میدان الکتریکی در آن نقطه متناسب است. به بیان دیگر ، از دیدگاه نظریه کوانتومی ، میدان الکتریکی نه تنها کمیتی است که نیروی الکتریکی بهازای واحد بار را بدست میدهد، بلکه کمیت تابعی است که مجذور آن احتمال مشاهده یک فوتون را در هر مکان مفروض بدست میدهد. هرچند نظریه الکترومغناطیس کلاسیک قادر به توصیف خصوصیات دقیقا کوانتومی تابش الکترومغناطیسی نیست، ولی قادر است با محاسبه مجذور میدان الکتریکی احتمال مشاهده فوتونها را بدست دهد.
معرفی تابع احتمال
مفهوم طبیعت موجی یک ذره مادی مانند الکترون را میتوان به این صورت تشریح کرد که رابطه بین احتمال مشاهده یک ذره و مجذور دامنه موج آن دقیقا همان رابطه بین احتمال مشاهده یک فوتون با جرم سکون صفر و مجذور دامنه موج آن (که همان میدان الکتریکی است) میباشد. در مکانیک کوانتومی دامنه موج وابسته به یک ذره همان تابع موجی است که بر اساس رابطه دوبروی به یک ذره نسبت داده میشود. در مکانیک کوانتومی (یا مدل ذرهای) احتمال مشاهده یک ذره مادی بهصورت مجذور تابع موج تعریف میشود.
بنابراین ، اگر تابع موج را با ψ نشان دهیم، در این صورت احتمال اینکه ذره در یک فاصله مفروض بین x و x + dx مشاهده شود، با ψ(x)|2dx| برابر خواهد بود. از طرف دیگر میدانیم که میدان الکتریکی ، در حالت کلی تابعی از مکان و زمان میباشد. بنابراین باید تابع موج و به تبع آن تابع احتمال نیز تابعی از مکان و زمان باشند. تعیین مکان مخصوص یک فوتون در یک زمان خاص با قطعیت کامل ، غیر ممکن است، اما تعیین احتمال مشاهده آن به کمک مجذور میدان الکتریکی امکانپذیر است. بطور مشابه ، تعیین مکان مخصوص یک ذره در یک زمان ویژه با قطعیت کامل غیرممکن بوده ولی تعیین احتمال مشاهده آن به کمک مجذور تابع موج ممکن است.
خصوصیات تابع احتمال
تابع احتمال یک کمیت حقیقی است، چون به صورت مجذور تابع موج تعریف میشود و مجذور یک کمیت باید حقیقی باشد، هرچند خود آن کمیت مختلط باشد.تابع احتمال همواره مقداری بین صفر و یک دارد که یک ، بیشینه مقدار آن و صفر ، کمترین مقدار تابع احتمال است.
توزیع دو جمله ای
امتحان های تکراری نقش بسیار مهمی در آمار و احتمال بازی می کنند خصوصا" وقتی تعداد امتحان ها ثابت و پارامتر (احتمال پیروزی) برای تمام امتحان ها برابر و امتحان ها همگی مستقل باشند.
به منظور تهیه فرمولی برای احتمال به دست آوردن " پیروزی در امتحان " تحت شرایطی که بیان شد ملاحضه کنید که احتمال به دست آوردن پیروزی و شکست در یک ترتیب مشخص برابر است. برای هر پیروزی یک عامل و برای هر شکست یک عامل وجود دارد و بنا بر فرض استقلال عامل و عامل در یکدیگر ضرب می شوند. چون این احتمال با هر دنباله ای از امتحان که در آن پیروزی و شکست وجود دارد همراه است تنها باید تعداد دنباله هایی از این نوع را بشماریم و سپس را در این تعداد ضرب کنیم.روشن است تعداد راه هایی که می توانیم امتحان را که برآمد همه آنها پیروزی است انتخاب کنیم برابر است با و نتیجه می شود که احتمال مطلوب برای " پیروزی در امتحان " برابر است.
تعریف
متغیر تصادفی توزیع دوجمله ای دارد و به آن عنوان متغیر تصادفی دو جمله ای داده می شود اگر و تنها اگر توزیع احتمال آن به صورت زیر باشد:
قضیه(1)
قضیه(2)
میانگین و واریانس توزیع دو جمله ای برابرند با :
قضیه(3)
اکر توزیع دو جمله ای با پارامترهای باشد و آنکاه:
قضیه(4)
تابع مولد گشتاور توزیع دوجمله ای به صورت است.
نکته : اگر امین پیروزی در امین امتحان رخ دهد باید پیروزی در اولین امتحان وجود داشته باشد و احتمال این پیشامد عبارت است از :
احتمال یک پیروزی در امین امتحان برابر است با و بنا براین احتمال آن که امین پیروزی در امین احتمال رخ دهد برابر است با:
توزیع دوجمله ای منفی
متغیرتصادفی توزیع دوجمله ای منفی دارد و به آن عنوان متغیر تصادفی دوجمله ای منفی داده می شود اکر و تنها اگر توزیع احتمالش به ازای به صورت زیر باشد:
قضیه(5)(
قضیه(6) میانگین و واریانس توزیع دوجمله ای منفی عبارتند از :
جمع احتمالها
جمع احتمالها
(منظور از «برآمد» در جملات زیر همان «پیشامد» است)
آزمایش پرتاب یک تاس را در نظر بگیرید. شش برآمد هم شانس 1، 6،5،4،3،2 برای این آزمایش وجود دارد، یعنی فضای نمون ای 6 عضو دارد. پیشامدهای زیر را تعریف می کنیم:
A: آمدن عدد 2
B: آمدن عدد 6
C: آمدن عدد زوج
D:آمدن عدد کوچکتر از 4
هر کدام از این پیشامدها مجموعه ای از یک یا چند برآمد هستند. در واقع
چون پیشامدها زیر مجموعه های فضای نمونه ای هستند، پس فضای نمونه ای مجموعه مرجع این پیشامدها است. به روش نمودار ون، فضای نمونه ای S را به صورت یک مستطیل بزرگ و پیشامدها را به صورت شکلهایی در داخل آن نشان می دهیم. پیشامدهای D,C در نمودار زیر نشان داده شده اند:
چون شش برآمد هم شانس وجود دارد، . در پیشامد «آمدن یک 2 یا یک 6» دو برآمد وجود دارد:
در این مثال می بینیم که
آیا این رابطه برای هر دو پیشامد دلخواه برقرار است؟
پیشامدهای D,C در بالا را در نظر بگیرید. پیشامد «C یا D» یعنی شامل همه برآمدهای موجود در C یا D یا هر دوی آنها است، یعنی
(آمدن عدد زوج یا عددی کمتر از 4 ) p =
(آمدن 6،4،2 یا آمدن 3،2،1)P=
بنابراین، در هر برآمدی به جز 5 وجود دارد. از این رو دقیقاً 5 برآمد مجزّا وجود دارند که این پیشامد را تشکیل می دهند، زیرا در تعیین تعداد اعضای یک مجموعه، اعضای تکراری را فقط یکبار می شماریم، بنابراین
از طرف دیگر مشاهده می کنیم که که برابر است با . پس در این مثال، . علت این هماهنگی را بررسی می کنیم:
در پیشامد 3C برآمد و در پیشامد D نیز 3 برآمد وجود دارند ولی در
، 5 برآمد وجود دارند. برآمد 2 هم در C است و هم در D، ولی باید دقت کنیم که هر برآمد را دقیقاً یک بار بشماریم. هنگام محاسبه ، این برآمد را دو بار به حساب می آوریم پس باید یک بار آن را کم کنیم یعنی باید احتمال پیشامد «D,C» یا را از مجموع فوق کم کنیم، به این ترتیب
این با نتیجه ای که قبلاً برای به دست آوریم هماهنگی دارد. این مطلب ما را به قانون جمع احتمالها هدایت می کند یعنی برای دو پیشامد D,C
این رابطه برای پیشامدهای B,A در بالا نیز برقرار است زیرا B,A هیچ گاه همزمان رخ نمی دهند، یعنی رخ دادن پیشامد غیر ممکن است. چون احتمال رخ دادن پیشامدهای غیر ممکن صفر است، پس و
نظریه احتمالات
نظریه احتمالات مطالعه رویدادهای احتمالی از دیدگاه ریاضیات است.
ریاضیدانان عددی بین صفر و یک را به عنوان احتمال یک رویداد تصادفی به آن نسبت میدهند. رویدادی که حتما رخ دهد احتمالش یک است و رویدادی که اصلا ممکن نیست رخ دهد احتمالش صفر است[1]*. احتمال شیر آوردن در شیر یا خط یک سکه سالم است، همانطور که احتمال خط آوردن هم است. احتمال اینکه پس از انداختن یک تاس سالم شش بیاوریم است.
به زبان سادهٔ ریاضی احتمال، نسبت تعداد اعضای مجموعهٔ پیشامدهای دلخواه به تعداد اعضای مجموعهٔ تمام پیشامدهای ممکن است. مثلا در مورد تاس برای محاسبهٔاحتمال آوردن عددی زوج:. مجموعهٔ پیشامدهای ممکن هست: {۱٫۲٫۳٫۴٫۵٫۶} و مجموعهٔ پیشامدهای دلخواه هست: {۲٫۴٫۶}. تعداد اعضای مجموعهٔ دلخواه هست ۳ و تعداد اعضای مجموعهٔ پیشامدهای ممکن هست ۶. پس احتمال هست:
جمع احتمال رخ دادن یک رویداد با احتمال رخ دادن رویداد مکمل آن، عدد یک میشود. مثلا در تاس ریختن جمع "احتمال آوردن شش" (که است) با "احتمال نیاوردن شش" (که است) میشود یک.
سؤالهای ویژهای که ریاضیدانان بزرگ را به اندیشیدن در این باره واداشت از درخواستهای نجیب زادگانی نشأت میگرفت که با ورق یا تاس قمار میکردند ، به قول پواسون:مسألهای مربوط به بازیهای تصادفی که از سوی "مرد این جهانی به ریاضت کشی یانسنی(؟)" پیشنهاد شد ، سرچشمه حساب احتمالات است.این"مرداین جهانی" شوالیه دومره نجیب زادهای بسیار با فرهنگ بود که با مسأله مربوط به مسأله نقطهها به پاسکال مراجعه کرد.پاسکال باب مکاتبه را با فرما بر این مسأله و مسائل دیگر گشود و هر دو برخی از بنیادهای نظریه احتمال را پیریزی کردند(۱۶۵۴).
در سال ۱۶۵۵دانشمند معروف هلندی کریستین هویگنس به آنها پیوست و این همکاری بسیار پرثمر بود. در سال ۱۶۵۷هویگنس اولین کتاب درباره احتمال را تحت عنوان "درباره محاسبات بازیهای شانسی"نوشت. این کتاب به منزله تولد واقعی احتمال محسوب میشود.دانشمندانی که این کتاب را خواندند متوجه شدند که با نظریهای عمیق سروکار دارند.بحث درباره مسائل حل شده و حل نشده و بسیاری از ایدههای جدید خوانندگان آن زمان این کتاب ، زمینه ساز مباحث نو شد.
دانشپژوهان ایتالیایی ، لوکا پاچولی(۱۵۱۴-۱۴۴۵) ، نیکولا تارتاگلیا(۱۵۵۷-۱۴۹۹) ، جرولامو کاردانو(۱۵۷۶-۱۵۰۱) و به خصوص گالیلو گالیلهای(۱۶۴۲-۱۵۶۴) از جمله پیشکسوتان دانش ریاضی هستند که احتمالهای مربوط به بسیاری از بازیهای تصادفی را محاسبه کردهاند.علاوه بر این آنها کوشش کردهاند تا مبنایی ریاضی برای احتمال فراهم آورند.کاردانو حتی درباره قمار بازی کتابی نوشت که شامل بخشهایی درباره روشهای نیرنگ است.
به هر حال پیشرفت واقعی در فرانسه از سال ۱۶۵۴ وقتی بلز پاسکال(۱۶۶۲-۱۶۲۳) و پیردو فرما(۱۶۶۵-۱۶۰۱) دو ریاضیدان نامی نامههایی به یکدیگر ردوبدل کردند آغاز شد ، که در این نامهها از روشهای کلی محاسبه احتمالها بحث کردهاند ، اما نمیتوان گفت که فرما و پاسکال بنیانگذاران نظریه احتمالات بودند.
خبر ظاهراً موثقی در دست است که فرما در بومون دولمانی نزدیک تولوز در۱۷ اوت ۱۶۰۱ بدنیا آمد.میدانیم که اودر کاستر یا در تولوز در ۱۲ ژانویهء۱۶۶۵ درگذشت.سنگ قبر او که بدواً در کلیسای آگوستین در تولوز بود و بعداً به موزهءملی منتقل شد،تاریخ مرگ فوق و سن فرما را در بدو مرگ ۵۷ سال میدهد.به دلیل اینکه اطلاعات متناقض تاریخ تاریخ تولد و مرگ فرما معمولاً به صورت ۱۶۶۵-۱۶۰۱ ثبت میشود.در واقع به دلایل متعدد تاریخ ولادت فرما به صورتی که نویسندگان مختلف داده اند از ۱۵۹۰ تا ۱۶۰۸ تغییر میکند.
فرما پسر یک تاجر چرم بود و تحصیلات مقدماتی را در زادگاه خود انجام داد.در ۳۰ سالگی به عضویت پارلمان محلی در تولوز در آمد و وظایف خود را در آنجا با دقت زیاد انجام داد.
وی که حقوقدانی متواضع و گوشه گیر بود قسمت اعظم ساعات فراغت خود را وقف مطالعهء ریاضیات کرد.
گرچه در دوران حیات خود مطالب کمی را منتشر کرد ولی با ریاضیدانان برجستهء زیادی که با او همزمان بودند مکاتبهء علمی داشت و از راه همین مکاتبات تا حد زیادی معاصران خود را تحت تاثیر قرار داد.
شاخه های ریاضی که وی موجب غنای آنها به قدری متعددند و سهم وی در آنها به قدری اهمیت دارد که بزرگ ترین ریاضیدان قرن هفدهم فرانسه نامیده شده است.
قبلاً خاطر نشان کردیم که مکاتبات بین پاسکال و فرما اساس علم احتمال را پیریزی کرد.متذکر میشویم که به اصطلاح "مسئلهء امتیازها" بود که آغازگر این مطلب گردید:"نحوهء تقسیم جایزه در بازی نیمه تمام مانده ای بین دو بازیکن به فرض داشتن مهارت یکسان با معلوم بودن امتیاز های دو بازیکن در موقع قطع بازی و تعداد امتیازات لازم برای برنده شدن را تعیین کنید."
فرما به بحث در حالتی پرداخت کهA،یکی از بازیکن ها برای برنده شدن ۲ امتیاز و Bبازیکن دیگر ۳ امتیاز میخواست.در اینجا جواب فرما برای حالتی اینچنین می آوریم.
چون آشکار است که چهار بازی دیگر نتیجه را معین خواهد کرد اگر aمعرف بازی ای باشد که در آن Aبرنده میشود و bمعرف بازی ای که در آن Bبرنده میشود و ۱۶ تبدبل دو حرف aوbرا ۴ به ۴ در نظر بگیریم:
aaaa,aaab,abba,bbab
baaa,bbaa,abab,babb
abaa,baba,aabb,abbb
aaba,baab,bbba,bbbb
حالت هایی که در آن aدو بار یا بیشتر ظاهر میشود،مساعد برای Aست.۱۱ تا از این حالتها وجود دارند.حالتهایی که در آن bسه بار یا بیشتر ظاهر میشود مساعد برای Bست.تعداد آنها ۵ است.بنابر این باید به نسبت ۱۱:۵تقسیم شود.در حالت کلی که برای برنده شدن Aبهmامتیاز و Bبه n امتیاز نیاز دارند،۲^m+n-۱
جایگشت ممکن دو حرف aوbرا m+n-۱ بهm+n-۱ مینویسیم:در این صورت عدد aتعداد حالتهایی را کهa،mبار یا بیشتر و عددbتعداد حالتهایی که در آن b،nبار یا بیشتر ظاهر میشود به دست می آوریم بنابراین باید جایزه به نسبت a:bتقسیم کرد.پاسکال مسئلهء امتیازها را با استفاده از مثلث معروف خود حل کرد
احتمال در قرن هیجدهم و نوزدهم(سیر تئوری)
بعد ار کارهای پاسکال،فرما و هویگنس در سال ۱۷۱۳ کتابی که یاکوب برنولی(۱۷۰۵-۱۶۵۴)و همچنین در سال ۱۷۳۰ کتابی که نوشت،پشرفت ناگهانی عمده ای بود.یاکوب برنولی،یکی از نخستین دانش پژوهان نظریهء احتمالات بود و در این موضوع کتاب "فن گمان" را نوشت که پس از مرگش در سال ۱۷۱۳ منتشر شد.در بخش اول این کتاب مقالهء هویگنس دربارهء بازیهای تصادفی مجدداً به چاپ رسیده است.قسمت های دیگر به تبدیلات و ترکیبات مربوط میشود و کتاب با قضیهء برنولی دربارهء توزیع های دوجمله ای به اوج خود میرسد.
گفتیم که یکی از افراد مهمی که سهمی در نظریهء احتمالات داشت آبراهام دوموآور بود.دوموآور یک "هوگنو"ی فرانسوی بود.هوگنو نامی ست که به پروتستان های فرانسوی قرون ۱۷و۱۸ داده شده بود.پس از نسخ فرمان نانت(فرمانی که در سال ۱۵۹۸ توسط هانری چهارم صادر شد و به موجب آن به هوگنویها مساوی دیگران داده شد)در سال ۱۶۸۵ به فضای سیاسی مساعدتر لندن مهاجرت کرد.
وی در زندگی خود را در انگلیس از طریق تدریس خصوصی گذاراند و از دوستان نزدیک آیزاک نیوتن شد.
دوموآور بخصوص به خاطر اثرش "قسط السنین عمر" که نقش مهمی در تاریخ ریاضیات آمارگری دارد،اثر "کمترین شانس" که حاوی مطالب جدیدتری دربارهء نظریهء احتمالات است و اثر "جنگ تحلیلی" که دربارهء سریهای متناوب،احتمال و مثلثات تحلیلی است،شهرت دارد.
بررسی انتگرال احتمالاتی زیر:
برای اولین بار و بررسی منحنی فراوانی نرمال:
Cوhثابت:
که در مبحث آمار اهمیت زیادی دارد به دوموآور منسوب است.فرمول "استرلینگ"،که به غلط چنین نامگذاری شده به دوموآور منسوب است.
افسانه ای که اغلب دربارهء مرگ وی گفته میشود بسیار جالب است.مطابق این داستان دوموآور حس میکرد هر روز یک ربع ساعت بیشتر از روز قبل به خواب نیاز دارد.وقتی این تصاعد عددی به ۲۴ ساعت رسید دوموآور درگذشت.
دو کار بزرگ لاپلاس که نه تنها تحقیقات خود او بلکه در موضوعات مربوط همهء کارهای پیشین را وحدت میبخشد،عبارتند از:"نظریهء تحلیلی احتمال"و"مکانیک سماوی".این دو اثر ماندنی به مقدمه های توصیفی مفصل به زبان غیرفنی:جستار فلسفی در احتمالات و شرح نظام عالم آغاز شدند.
جستار فلسفی در احتمالات مقدمه ای خواندنی برای نظریهء احتمالات است؛این مقاله تعریف"منفی"لاپلاس از احتمالات را که بر "پیشامدهای متساوی الاحتمال" مبتنی ست شامل میشود.
"نظریهء تصادف"عبارت است از تحویل همهء رویدادهایی که از یک نوع اند به تعداد معینی از موارد متساوی الاحتمال،یعنی مواردی که از نظر پیشامدی که در پی احتمالش هستیم مطلوبند.
به نظر لاپلاس مسائل مربوط به احتمال از آن رو مطرح میشود که چیزهایی را میدانیم و چیزهایی را نمیدانیم.
لاپلاس همچنین نظریه ای را که "تامس بیز"،کشیش گمنام انگلیسی طرح کرد و پس از مرگش در فاصلهء سالهای۱۷۶۳-۱۷۶۴ منتشر شده بود از فراموشی نجات داد و مجدداً تدوین کرد.این نظریه به نظریهء احتمالات وارون معروف شده است.
در سال ۱۹۰۰ در کنگرهء بین المللی ریاضیدانها در پاریس،"دیوید هیلبرت"(۱۹۴۳-۱۸۶۲)۲۳ مسئله را که به عقیدهء او حل آنها در پیشرفت ریاضیات مؤثر است پیشنهاد کرد.یکی از این مسائل بحث اصل موضوعی احتمال بود.
هیلبرت در سخنرانی خود نقل قولی از"وایر اشتراوس"آورد که گفته بود:"هدف نهایی که همیشه باید به یاد داشت،رسیدن به یک فهم درست مبانی علم است."هیلبرت اضافه کرد که فهم کامل نظریه های خاص یک علم برای بحث موفقیت آمیز مبانی آن ضروری ست.