پیشگفتار..................................................................................................................................... 1
مقدمه.......................................................................................................................................... 3
تاریخچه لیزر............................................................................................................................. 5
تعریف لیزر................................................................................................................................. 6
فیزیک لیزر................................................................................................................................ 8
مبانی نظری لیزر...................................................................................................................... 49
انواع لیزر.................................................................................................................................... 84
معرفی لیزرهای توان پایین................................................................................................... 92
اثرات لیزرهای کم قدرت....................................................................................................... 161
مکانیسم برهمکنش بافت – لیزر......................................................................................... 171
درمان فتودینامیک................................................................................................................... 182
مقایسه لیزرهای توان بالا با لیزرهای توان پایین............................................................. 200
روش های کاربرد لیزر توان پایین........................................................................................ 239
رویکرد بالینی لیزرهای توان پایین...................................................................................... 242
کاربرد در فیزیوتراپی............................................................................................................... 244
کاربرد در دندانپزشکی............................................................................................................ 281
کاربرد در پزشکی (افتالموژی – اورولوژی – دستگاه گوارش – دستگاه تنفس)..................... 293
کاربرد در پوست و اعصاب..................................................................................................... 296
عوارض احتمالی درمان با لیزرهای کم توان..................................................................... 310
سایر روش های درمان بالینی............................................................................................... 313
خطرات جانبی لیزرها و نکات ایمنی و حفاظتی............................................................. 315
نتیجه گیری.............................................................................................................................. 325
مراجع.......................................................................................................................................... 326
دانلود گزارش کارآموزی آزمایشگاه الکترونیک رشته فیزیک کاربردی بافرمت ورد وقابل ویرایش تعدادصفحات 26
گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی,گزارش کارورزی
این پروژه کارآموزی بسیار دقیق و کامل و جهت ارائه واحد درسی کارآموزی است
آزمایش شماره یک :
(اسیلوسکوپ) هدف : آموزش کار با دستگاه اسیلوسکوپ و کاربرد آن در مطالعه مدارهای جریان متناوب. الف) آشنایی با اسیلوسکوپ : وسیلهای است بسیار موثر و دقیق که میتواند سیگنال ولتاژ را نشان دهد و نوع سیگنال را آشکار کند. به وسیلة این دستگاه میتوانیم ولتاژ یک سیگنال و اختلاف فاز دو موج را اندازهگیری کنیم، و در صورتیکه مقاومت مدار مشخص باشد نیز میتوانیم جریان مدار را حساب کنیم. ورودی آن میتواند یک سیگنال ولتاژ از یک قسمت مدار باشد. اسیلوسکوپ دارای دو کانال است یعنی میتوانیم دو سیگنال را همزمان از دو قسمت مدار به آن بدهیم و آن دو سیگنال را با هم مقایسه کنیم. ورودی دستگاه : مکان ورودی با نامهای CH1 و CH2 در نوار آبی رنگ مشخص شده است و مکان فیشهای ورودی در پایینترین قسمت دستگاه است. position (پیچ تنظیم) : میتوانیم سیگنال موج را تنظیم کنیم، یعنی در راستای عمودی بالا یا پایین ببریم. volt /Div (ولت بر قسمت) : مقیاس محور عمودی را تغییر میدهد. تغییر سایز سیگنال ولتاژ برای اینکه کل موج را در راستای عمودی در صفحه نمایش ببینیم. Time / Div (زمان بر قسمت) : مقیاس محور افقی را تغییر میدهد. کلید Ac / CND / Dc : تعیین ولتاژ AC ، کالیبره کردن اسیلوسکوپ (تعیین صفر محور عمودی)، تعیین ولتاژ DC . Intensity : شدت نور را در صفحه نمایش کم و زیاد میکند. focus : برای پهن کردن نوار نوری Vertmode : CH1 : کانال 1 chop : هر دو کانال را نشان میدهد Alt : هر لحظه یک کانال را نشان میدهد Add: دو سیگنال موج را جمع میکند CH2 : کانال 2 نحوه کالیبراسیون کردن اسیلوسکوپ : نکته : اگر سیستمی کالیبره نباشد عددی که نشان میدهد قابل اعتماد نخواهد بود. دستگاه اسیلوسکوپ دارای یک سیگنال ولتاژ مشخص است که همواره ثابت است پس اگر بخواهیم دستگاه را کالیبره کنیم باید از سیگنال خودش استفاده کنیم و آنرا تنظیم کنیم، برای این کار : 1- از ولتاژ استاندارد اسیلوسکوپ به ورودی یکی از کانالهای دستگاه وصل میکنیم. 2- volts /Div را آنقدر تغییر میدهیم تا 1vpp را نشان دهد در این صورت آن کانال اسیلوسکوپ کالیبره خواهد بود. نحوه اندازهگیری ولتاژ یک سیگنال موج : فرض میکنیم موج ورودی سینوسی باشد. ابتدا باید vpp را اندازه گرفت. برای این کار تعداد خانههایی که در راستای محور عمودی از قله تا درة یک موج وجود دارد را اندازه میگیریم. ضریب قرائت × تعداد خانههای صفحه نمایش در راستای محور عمودی = Vpp عدد خوانده شده از روی volts / Div = ضریب قرائت vpp نحوه اندازهگیری فرکانس یک سیگنال موج : ضریب قرائت × تعداد خانههای افقی = T ضریب قرائت : عدد خوانده شده از Time / Div (فاصله دو نقطه از موج که در شرایط یکسانی هستند که ضریب قرائتش ممکن است برحسب s یا ms یا s باشد) s : Hz , ms : kHz , s : MHz ب) اندازهگیری اختلاف فاز بین دو موج : هنگامیکه دو موج سینوسی که فرکانس آنها برابر است ولی اختلاف فاز دارند را به اسیلوسکوپ بدهیم، میتوانیم اختلاف فاز آنها را اندازه بگیریم. برای اندازه گیری اختلاف فاز بین دو موج داده شده به صورت زیر عمل میکنیم : مدار روبرو را با خازن و مقاومت میبندیم و برای اسیلوسکوپ دو ورودی از مدار میگیریم، یکی از دو سر مدار برای و دیگری از دو سر خازن بر روی . (سعی میکنیم هر دو کانال را هماهنگ قرار دهیم). اگر دکمه Vertmode را روی chop بگذاریم میتوانیم هر دو موج را همزمان مشاهده کنیم و اگر دکمههای موجود زیر و را روی بگذاریم میتوانیم مرکز اختلاف فاز را روی یک نقطة دلخواه تنظیم کنیم. حال اگر کلید mode را از Auto به حالت xy تغییر دهیم میتوانیم اختلاف فاز را به صورت یک بیضی (یا دایره) مشاهده کنیم. از مرکز این بیضی تا جایی که محور عمودی را در اولین نقطه قطع میکند را B و تا نقطه ماکزیمم بیضی با محور عمودی را A مینامیم و با توجه به رابطه میتوانیم اختلاف فاز دو موج را محاسبه کنیم .
موضوع :
پاورپوینت فیزیک پایه 2 – رشته فیزیک
کتاب مرجع: فیزیک (جلد سوم)
دیوید هالیدی و رابرت رزنیک
فایل بصورت ppt و قابل ویرایش میباشد
فصل 26 : بار وماده
الکترو مغناطیس – سابقه تاریخی
بار الکتریکی
رساناها ونارساناها
قانون کولن
بار الگتریکی کوانتیده است
بار و ماده
بار پایسته است
این فایل پاورپوینت دارای 351 صفحه میباشد و بطور کامل مباحث بالا را تحت پوشش قرار میدهد که برای مطالعه و تدریس بسیار مناسب میباشد
فهرست مطالب
* فصل اول – شکل گیری ستارگان
* پیش از انفجار بزرگ
* ساختمان بزرگ مقیاس جهان
* نظریه انفجار بزرگ
* عالم در ابتدا چگونه به نظر میآمد؟
* مواد تشکیل دهنده ماده تاریک
* منشأ سیارات چه بوده است؟
* ستارگان، کهکشان ها و انبساط کیهان
* متراکم شدن گرانشی
* قطعه قطعه شدگی متوالی
* راز تولد ستارگان
* چگونگی تکامل ستارگان
* ستارگان متغیر و رصد آنها
* نگاهی بر نحوه ی تشکیل منظومه شمسی
* کهکشانه ها چیستند؟
* نظریه امام صادق در باره ی پیدایش جهان
* فصل دوم – رشد و تحول ستارگان
* تولد و مرگ ستارگان
* محیط میان ستاره ای
* ستارگان جوان
* ناپایداری ها و ابرها
* زندگی یک ستاره
* ستارگان دوتایی نزدیک به هم
* ساختار خورشید – ستارگان
* خورشید
* حرکت ستارگان در کهکشان ها
* پایان سیر تکاملی ستارگان
* ستاره های دنباله دار و شهابها
* دنباله دار LINEAR
* فناوری و سفرهای فضایی
* صور فلکی
* فصل سوم – غولها
* غولهای سرخ
* نام تعدادی از غولهای سرخ
* بعضی از غولهای سرخ برجسته
* درون غولهای سرخ
* فعل و انفعالات عناصر سبک در غولهای سرخ
* تکامل غولهای سرخ
* فصل چهارم – ابرنواختر ها
* نو اختر
* ابرنوستاره ها
* انفجار ابرنواختر
* اختر نما ها
* باقیمانده از انفجار
* طبقه بندی انفجارهای کوکبی
* حالت پیش از نو اختری ستارگان
* فوق نواختران و « حالت هسته ایی» ماده
* فصل پنجم – سیاه چاله ها
* تاریخچه نظریه سیاه چاله
* سیاه چاله چیست؟
* سیاه چاله ها تاابد فشرده نمی شوند
* سیاه چاله مطلق
* سیاه چاله ناچرخان
* فصل ششم – کوتوله های سفید
* منشأ کوتوله های سفید
* کوتوله سفید
* تشکیل کوتوله های سفید
* سیارکهای نوزاد
* ستاره های نوترونی
* فصل هفتم – سرنوشت نهایی جهان
* قوانین حاکم بر جهان
* نظریه جهان های موازی
* جهان نامرئی
* معمای کهکشان حلقوی قطبی
* عصر تاریکی جهان
* جهان ما و جهان های دیگر
* سرنوشت نهایی جهان
* واژگان فارسی – انگلیسی
* فهرست اسامی کسان
* منابع و مآخذ
جهان چگونه آغاز شد؟ چنین رویدادی را چگونه می توان تصور کرد؟ امروز بیشتر دانشمندان بر این عقیده اند که قراین خوبی وجود دارد که نشان می دهد گذشته جهان بسیار متفاوت بوده است و همه ماده جهان از انفجاری عظیم نشأت کرده و جهان از آن پس پیوسته انبساط یافته است.
در خیال ، زمان را تا انفجار بزرگ به عقب می بریم و چون به اندازه کافی به عقب باز گردیم ـ یعنی به زمانی پیش از پیدایش کهکشانها که جهان بسی کوچکتر از حال بود ـ آنچه می بینیم گاز سوزانی از اتمها و فوقونها یعنی ذرات نور است . چون باز هم به عقب رویم، جهان همچنان انقباض می یابد، ذرات گاز به یکدیگر نزدیکتر و در نتیجه برانگیخته تر می شوند و دمایشان افزایش پیدا می کند. هر چه بیشتر به عقب رویم، گاز داغتر و سوزانتر می شود[1]. با افزایش دمای گاز، هر چیز به ذرات تشکیل دهنده اش « ذوب » می شود. اتمها به الکترونها و هسته ها «ذوب[2]» می شوند ؛ هسته ها به پروتونها و نوترونهای سازنده خود تجزیه می شوند و چون دما باز هم افزایش یابد پروتونها و نوترونها به کوارکها و گلوئونهایی تجزیه می شوند که آنها را تشکیل داده اند . جهان در بیشترین دمای ممکن متشکل است از آتشگوی آغازینی از همه ذرات بنیادی. امروزه مطالعه جهان آغازین عبارتست از ساختن مدلهایی ریاضی برای این آتشگوی بر اساس نظریه های جدید ذرات کوانتومی ( ذرات بنیادی ). وقتی که در سال 1964 آرنو پنزیاس و رابرت ویلسن در آزمایشگاههای بل در نیوجرزی، اشعه میکروموجی باقیمانده از انفجار بزرگ را کشف کردند ، این نظریه سخت تقویت شد. به دنبال این تأیید تجربی، فیزیکدانان و اختر فیزیکدانان نظری با اطمینان به انجام محاسبات پیچیده خواص انفجار آغازین پرداختند. آنان با استفاده از قوانین شناخته شده فیزیک هسته ای محاسبه کردند که چگونه ممکن است عنصرهای شیمیایی ـ هسته های اتمی ـ از آتشگوی آغازینی متشکل از پروتونها و نوترونها بوجود آمده باشد؛ و از روی این محاسبات، فراوانی نسبی عناصر سبک نظیر ئیدروژن، هلیوم و دوتریوم را پیش بینی کردند . این پیش بینی ها دقیقاً با فراوانیهائی که امروزه مشاهده می شود, وفق می دهد . فکر انفجار بزرگ[3] از برکت این پیش بینیهای موفقیت بار اعتبار زیادی کسب کرد بطوری که در اوایل دهه 1970 بر نظریه های دیگر مربوط به پیدایش جهان چیره شد. چیزی که به «مدل متعارف انفجار بزرگ سوزان» معروف شده است نشان دهنده توافق نظر عمومی جدیدی است درباره وضع جهان آغازین. فرضیه اصلی « مدل متعارف » آن است که جهان سوزان اولیه به سرعت و بطرزی یکنواخت، در حالیکه دما بطور یکنواخت کاهش پیدا می کرد، انبساط یافت.
هر نظریه موفق معمولاً دیدگاهی تازه را می گشاید و مسائل جدیدی را بهمراه می آورد؛ نظریه انفجار بزرگ نیز از این قاعده مستثنی نیست. دو مسأله چالش طلبی که این نظریه مطرح می کند عبارتند از «مسأله علیت» و«مسأله تخت بودن فضا».
مسأله علیت این است که جهان به اندازه ای بزرگ است که نواحی بسیار دور از هم آن نمی توانند با یکدیگر مرتبط باشند، یعنی بطور فیزیکی با هم به کنش متقابل بپردازند، حتی اگر چنین ارتباطی با سرعت نور ـ بیشترین سرعت ممکن ـ انجام گیرد. اگر جهان 10 تا 15 بیلیون سال پیش (بیشتر تخمینها در این حدودند) بوجود آمده باشد، نور یا هر نوع وسیله ارتباط دیگر در این مدت نمی تواند مسافت بین دو کهکشان را که فرضاً بیست میلیون سال نوری ـ رقمی بزرگتر از سن جهان ـ از هم فاصله دارند بپیماید. و اگر قسمتهای مختلف جهان مرئی کنونی نتوانند با هم کنش متقابل داشته باشند، پس چرا این قدر به هم شبیهند؟ منظور از شباهت این است: در هر امتداد که بنگریم می بینیم که دمای زمینه میکروموجی یکی است و به هر جا که نگاه کنیم کهکشانهایی را می بینیم که با وجود تفاوتهای اندک، اساساً مانند یکدیگرند.
دومین مشکل مدل متعارف انفجار بزرگ، یعنی مسأله تخت بودن فضا، این است که چرا در زمان حاضر فضای جهان در مقیاسهای بزرگ تا این حد تخت و مسطح است. بنا بر نظریه نسبیت عمومی[4] اینشتاین، فضا می تواند خم شود، و این نکته را آزمایش در همسایگی خورشید تأیید کرده است. اما در پهنه های وسیعتر، مانند فضای میان کهکشانها، انحنای فضایی بقدری کم است که آن را نمی توان ردیابی کرد. حتی در مقیاس مجموعه های کهکشانی نیز فضا را می توان به تقریب خوب یک فضای تخت اقلیدسی عادی دانست. ولی بنابر افکار متداول در فیزیک نظری و کیهانشناسی، تخت بودن فضا چیزی است فوق العاده نامحتمل و در نتیجه فهم علت آن دشوار است. بسیار محتملتر آن است که جهان چنان پیچ و تاب یابد و فضایی چنان خمیده را بوجود آورد که به آنچه دیده می شود شباهتی نداشته باشد .
اینها مسائلی نیست که مایه نگرانی بیشتر مردم شود، اما اسباب ناراحتی اخترفیزیکدان و کیهانشناس را فراهم می آورد . آلن گوث، فیزیکدانی نظری ، که اکنون در ام . آی . تی است ، به سال 1981 در نظریه ای که آن را «جهان متورم» نامید ، پاسخی برای این سؤالها پیشنهاد کرد. نظریه گوث را به حق می توان اولین اندیشه نو کیهانشناسی در چند دهه اخیر دانست .
بنا بر نظریه گوث، تکامل جهان آغازین ـکه گهگاه جهان رویانی نیز نامیده می شودـ انبساطی یکنواخت در گازی سوزان و متشکل از ذرات، نبود. بلکه حالت جهان، در حالیکه هنوز آتشگویی بود، دستخوش تغییر و تحولی بنیادی شد، تحولی که یک تغییر حالت [5] نامیده می شود. بعد از این تغییر حالت بود که جهان، در حالت متعارفی انفجار بزرگ سوزان، با انبساطی نسبتاً یکنواخت قرار گرفت. اما پیش از این تغییر حالت، جهان در حالتی بود کاملاً متفاوت موسوم به «حالت متورم » . جهان در این دوران تورم ، دچار انبساطی عظیم شد .
اگر وجود حالت متورم را در زمانی که دمای جهان یک میلیون بیلیون درجه کلوین بود بپذیریم، می توانیم مسأله علیت را به صورت زیر حل کنیم . در حالت متورم همه نواحی جهان مرئی کنونی ، حتی کهکشانهایی که اکنون 20 میلیون سال نوری از هم فاصله دارند ، می توانستند از طریق علایم نوری با هم مرتبط باشند . البته جهان در آن زما مانند امروز نبود . کهکشانها وجود نداشتند ، ولی افت و خیزهای کوچکی که در این گاز ذرات وجود داشت بر یکدیگر اثر می کردند و همین افت و خیزها بودند که رشد کردند و کهکشانها را بوجود آوردند . پس از تغییر حالت مفروض گوث پیوند این افت و خیزها با یکدیگر از هم گسست و دیگر ارتباط آنها با هم از دوردست به ما می رسد ، آن افت و خیزهای ـ که اکنون کهکشان شده اند ـ با ما تماس حاصل می کنند .
وجود یک حالت متورم در گذشته این نکته را نیز توضیح می دهد که چرا در حال حاضر هندسه بزرگ مقیاس جهان اینقدر تخت است . نظریه متعارف انفجار بزرگ ، شرایطی را در جهان آغازین فرض می کند که تختی کنونی جهان عملاً ناممکن بنظر می رسد . اما فرض تورم گوث، پیوند میان روال کنونی جهان و شرایط اولیه ای را که برای جهان در نظر می گیریم ، از میان برمی دارد . مطابق نظر گوث هر قدر هم که در یک مدل ، جهان آغازین ـ ففط یک میلیونیم ثانیه پس از آغاز ـ « به دقت تنظیم شود » . حاصل نهایی جهانی است از لحاظ فضایی تخت ، مشروط بر آنکه در ابتدا تورم بزرگ اقتصادی توسل جست ، تورمی نه ده برابر ، بلکه بیلیونها برابر . در این صورت دیگر فرقی نمی کند که مردم در آغاز تورم غنی بوده اند یا فقیر . پول همه بی ارزش می شود و هر کس بی چون و چرا ورشکسته است .
گرچه فرض جهان متورم گوث مسائل علیت و تخت بودن فضا را حل کرد ، ولی خود مانند نظریه انفجار بزرگ[6] گرفتار مسأله ایست ( که گوث هم از آن اطلاع دارد ) . این مسأله به جزئیات تغییر حالت مربوط می شود . یعنی به آن دگرگونی شدیدی که برای حالت آتشگوی فرض می شود ، یا به عبارت دیگر به چگونگی گذر جهان از حالت متورم به حالت نامتعارف انفجار بزرگ . آنچه واقع شد این است که تغییر حالت از طریق تکوین و تشکیل حبابهاصورت گرفت .
کتری پر از آبی را روی اجاقی داغ تصور کنید . با گرم شدن آب ، حبابهای بخار در کتری تشکیل می شود و پس از چندی آب شروع به جوشیدن می کند . گذر از مایع به گاز تغییر حالتی نظیر تغییر حالت گوث است . در داخل حباب یک حالت وجود دارد ( حالت بخار در مورد آب و « حالت انفجار بزرگ » در مورد جهان ) و در بیرون حباب حالتی دیگر ( حالت مایع در مورد آب و « حالت متورم » در فرضیه گوث ) . با تشکیل حبابهای حالت انفجار بزرگ در حالت متورم ، این حبابها با یکدیگر برخورد می کنند و دیری نمی گذرد که حالت درون حباب ـ حالت انفجار بزرگ ـ سرتاسر فضا را فرا می گیرد ، درست مانند موقعی که بگذاریم آب بجوشد و سرانجام تماماً تبدیل به بخار شود . اما این برداشت از تغییر حالت موجب درد سر گوث شد . اگر جهان کنونی حاصل آن همه برخوردهای قهرآمیز حبابهای اولیه بشمار رود، باید بسی ناهمگنتر از آنچه مشاهده می شود باشد . بنابراین مدل گوث به ظاهر ناموفق است .
آ. لینده فیزیکدان شوروی و دو فیزیکدان آمریکایی به نامهای آندر آس آلبرخت و پاول اشتاینهارت از دانشگاه پنسیلوانیا به نجات این مدل کمر بستند . آنان نشان دادند که اگر حالت متورم بقدر کافی دوام آورد ، برخوردهای مزاحم و چندگانه حبابها صورت نخواهد پذیرفت و تنها یک حباب بزرگ تنها از حالت انفجار بزرگ در داخل حالت متورم بجا خواهد ماند . اگر حرف این نظریه دانان درست باشد، جهان ما آن یک حباب بزرگ است و ما اکنون در داخل آن زندگی می کنیم .
با آنکه نظریه گوث مسائل علیت و تخت بودن فضا را حل می کند ، ولی سؤال بنیادی تر همچنان باقی است . پیش از حالت تورم چه بود ؟ این سؤال ما را به پرسشی باز می گرداند که در آغاز کردیم : این روند چگونه آغاز شد ؟ و این سؤالی است که ذهن افراد عادی را هم می آزارد . دانشمندان به تازگی در آن چنگ انداخته اند و سناریویی که ارائه شده این است : جهان ، یعنی آتشگوی انفجار بزرگ ، از هیچ ـ یعنی از یک خلاء ـ نشأت کرد . چگونه چنین چیزی ممکن است؟
برای پاسخ دادن به این سؤال نخست باید دید که فیزیکدانان از هیچ ـ یعنی از خلاء ـ چه برداشتی دارند . مطابق نظریه های جدید ، خلاء همان هیچ نیست بلکه آکنده از ذراتی کوانتومی است که میان بود و نبود نوسان می کنند . این ذرات خرد ، در کسری از ثانیه بوجود می آیند و بی درنگ یکدیگر را نابود می کنند و چیزی بجا نمی گذارند . خلاء به این معنی مانند سطح اقیانوس است . چون از نزدیک نظر شود پر از موج است ، ولی از فاصله ای دورتر ، مثلاً از فراز یک هواپیمای جت ، صاف و بی حرکت می نماید . همینطور هر خلاء چون از دور دیده شود یکدست و تهی به چشم می آید ، اما چون از نزدیک و با وسایل خاص بازرسی شود آکنده از ذرات ریز کوانتومی به نظر خواهد رسید .
یک راه ممکن برای پیدایش جهان از خلاء این است که یکی از امواج اقیانوس خلاء ، بجای آنکه به هیچی و نابودی فرو افتد ، پیوسته رشد کند . برخی از فیزیکدانان نظری بر این باورند که این امر در صورتی امکانپذیر خواهد بود که گرانش به حساب آید . گرانش به صورت تقویت کننده آن موجی عمل می کند که در آغاز بسیار خرد است ، و آن را تا حد آتشگوی تمام عیاری رشد می دهد که می تواند به جهانی در حالت متورم تبدیل شود.
تبیین محتمل دیگری از آفرینش جهان از یک خلاء این است که « خلاء » اولیه جهان ناپایدار بوده است . مطابق این حدس ، خلاء اولیه ، خلائی واقعی ـ یعنی پائینترین حالت انرژی ـ نبود بلکه « خلائی دروغین » بود . قوانین نظریه کوانتومی ایجاب می کند که چنین خلاء دروغینی به خلائی راستین تلاشی یابد ـ تلاشی قهرآمیزی که با ایجاد ذره های بسیار همراه است . بدین طریق تلاشی[7] یک خلاء دروغین منشأ جهان را ـ منشأ آتشگوی آغازین را که هر چیز دیگر از آن پدید آمد ـ توضیح می دهد .
چنین اندیشه هایی درباره منشأ جهان ، بی اندازه نظر پردازانه اند و فعلاً هیچ راهی نیست که صحت و سقم آنها را باز نماید . احتمالاً باید آنها را حدس و گمان خواند . ولی حدسهایی معقول که چارچوب فیزیک کنونی ما آنها را مجاز می شمارد ، و فیزیکدانان و اختر فیزیکدانان نظری بسیاری پشتیبانشان هستند . از سوی دیگر بعضی از دانشمندان بر این نظرند که ما هرگز به پاسخ این قبیل سؤالهای نهایی دست نخواهیم یافت و چنین استدلال می کنند که چون آغاز عالم ، رویدادی مشاهده ناپذیر است پس در حوزه علم تجربی نمی گنجند . برخی دیگر معتقدند که در آغاز فضا و زمان چنان آکنده از پیچ و تاب بود که دسترسی به قوانین مبین این رویداد میسر نیست . شاید مفهوم قانون فیزیکی خود در اینجا بی معنی شود .
برخی این نظرها را ناپخته و بدبینانه می دانند . هنوز خیلی زود است که درباره توانایی آدمی به درک منشأ جهان نظر نهایی را اعلام کنیم . فیزیک معاصر امکاناتی را در برابر فهمیدن می گشاید که در گذشته به تصور هم نمی گنجد . برخی دیگر معتقدند که در آغاز فضا و زمان چنان آکنده از پیچ و تاب بود که دسترسی به قوانین مبین این رویداد میسر نیست . شاید مفهوم قانون فیزیکی خود در اینجا بی معنی شود .
ساختمان بزرگ مقیاس جهان
میان ما و کهکشانهایی که ساخت بزرگ مقیاس جهان را رقم می زنند میلیونها سال نوری فاصله است . حال دیگر امری بدیهی است که کهکشانها منظومه هایی ستاره ای در بیرون راه کهکشان هستند ؛ ولی اندکی بیش از پنجاه سال پیش مطلب پیش پا افتاده امروز ، موضوع بحث و جدل بود. در سال 1924 ادوین هابل[8] ، با استفاده از تلسکوپ 5/2 متری جدید مونت ویلسن در مطالعه ستارگان متغیر فیفاوسی کهکشان امراه المسلسله و سایر کهکشانهای نزدیک ، به این مناقشه خاتمه بخشید . درخشندگی مطلق ( ذاتی ) یک قیفاوسی تابعی از دوره تناوب آن است . از روی اندازه گیری دوره تناوب و شار انرژیی که از این ستاره بر زمین می تابد ، برآوردی از فاصله آن بدست می آید . هابل این روش را بکار برد و نشان داد که فاصله ما از امراه المسلسه تقریباً ده برابر قطر کهکشان ما است .
او برای آنکه این نقشه را تا فواصلی بسط دهد که قیفاوسها قابل تشخیص نیستند ، به جستجوی اجرامی برآمد که پراکندگی اندکی در توزیع درخشندگی مطلق داشتند . پرنورترین ستاره ابرغول در یک کهکشان و پنجمین کهکشان از حیث روشنی در یک مجموعه کهکشانی ، « شمعهای معیار» ی بودند که هابل بکار برد تا راه خود را تا فاصله 800 مگاپارسک[9] ( در درجه بندی جدید ) بگشاید .ناحیه ای به این شعاع بر 7 10 * 2 کهکشان متوسط مشتمل می شود و وسعت آن تقریباً 15 درصد شعاع جهان قابل رؤیت است !
اگر کهکشانها توزیعی تصادفی می بود ، باید یک یا دو کهکشان در هر 100 مگاپارسک مکعب وجود می داشت .این توزیع را در آسمان برای کهکشانهایی که از 100 مگاپارسک به ما نزدیکترند نشان می دهد . ناحیه مرکزی مجموعه سنبله مثال برجسته ایست از غیرتصادفی بودن یا کلوخه مانند بودن توزیع کهکشانها در مقیاسهایی کمتر از چند مگا پارسک . بعضی از کهکشانها ، دوتایی های کم و بیش منفردی را تشکیل می دهند ؛ برخی دیگر در اجتماعات کوچکی ، چون گروه محلی که کهکشان ما و امراه المسلسله اعضای اصلی آنند ، جای دارند ؛ و بعضی دیگر اعای مجموعه هایی غنی ( وسیع و چگال ) هستند که ممکن است هزاران کهکشان داشته باشند
سلسله مراتب پیوسته ای از ساختواره ها ، از کهکشانها و گروهها گرفته تا مجموعه های کهکشانی و مجموعه های مجموعه های کهکشانی ، وجود دارد. شعاع ناحیه مرئی روشن یک کهکشان متوسط ، نظیر کهکشان ما ، بین 20 تا 30 کیلو پارسک است . ناحیه مرکزی یک مجموعه غنی کهکشانی ، معمولاً شعاعی در حدود نیم مگاپارسک دارد و مطالعات اخیر نشان داده است که نواحی بیرونی آن می تواند تا 10 الی 20 مگاپارسک ادامه یابد . پژوهشهای آماری اخیر همچنین مجموعه هایی از مجموعه های کهکشانی را آشکار ساخته است که بطور متوسط از دو یا سه مجموعه کهکشانی غنی تشکیل می شوند . در این دامنه وسیع اندازه ها ـ از 30 کیلو پارسک تا ده ها مگاپارسک ـ ظاهراً ارجحیتی برای مقیاس خاصی برای تجمع وجود ندارد همه مرزهای میان گروهها ، گروههای گروهها ، مجموعه ها و مجموعه های مجموعه ها صرفاً اختیاری و من عندی است . اگر به مقیاسهای باز هم بزرگتر روی آوریم و نواحیی از جهان را با هم بسنجیم که حجمی در حدود یک میلیون مگا پارسک مکعب یا بیشتر دارند ، شماره کهکشانها در یک نمونه چندان تفاوتی با شماره نمونه دیگر ندارد . چون نسبت به این مقیاسهای صد مگا پارسکی ، که هنوز نسبت به اندازه جهان مرئی کوچکند ، متوسط بگیریم دیده می شود که توزیع کهکشانها به وجه قابل ملاحظه ای یکنواخت است . هر گاه بگوئیم که در این مقیاسهای بزرگ ، جهان همگن ـ یعنی از هر نقطه ای که نظر شود ، ظاهری یکسان دارد ـ و تکروند ـ یعنی در همه امتدادها یکسان می نماید ـ است ، تقریب خوبی خواهد بود . تکوین و تحول ساختواره های بزرگ مقیاس ، از کهکشانها تا مجموعه های مجموعه های کهکشانی ، به کیهانشناسی مربوط می شود.