فرمت فایل : ویژوال استادیو : قابل ویرایش
در این سورس کد دستگاه معادلات به روش گوس حل و سپس نتیجه در خروجی نمایش داده میشود و این قطعه کد فقط در سایت فروشگاه پارس موجود میباشد.
کتاب معادلات دیفرانسیل معمولی
تالیف جمال صفار اردبیلی
منبع رشته علوم پایه، مهندسی و شیمی دانشگاه پیام نور
شامل 206 صفحه کتاب در قالب فایل pdf
256 اسلاید
سرفصل معادلات دیفرانسیل
عنوان
فصل اول: معادله دیفرانسیل مرتبه اول
1: ماهیت معادلات دیفرانسیل و طبقه بندی آنها
2: معادله دیفرانسیل جدا شدنی و تبدیل به آن
3: معادله دیفرانسیل همگن و تبدیل به آن
4: دسته منحنی ها و دسته منحنی های متعامد
5: معادله دیفرانسیل کامل
6:عامل انتگرال ساز
7: معادله دیفرانسیل مرتبه اول خطی و تبدیل به آن
فصل دوم: معادله دیفرانسیل مرتبه دوم
1: معادله دیفرانسیل مرتبه دوم حالت خاص فاقد یا
2: معادله دیفرانسیل مرتبه دوم با ضرایب ثابت همگن
3: معادله دیفرانسیل کشی-اویلر
4: معادله دیفرانسیل مرتبه دوم خطی غیر همگن ( تغییر متغیر)
5: روش ضرایب ثابت( ضرایب نامعین)
فصل سوم: حل معادله دیفرانسیل به روش سری ها
1: سری توانی
2: نقاط معمولی ومنفرد وجواب های سری معادلات دیفرانسیل
3: نقاط منفرد منظم معادلات دیفرانسیل خطی مرتبه دوم
:4حالتی که معادله شاخص دارای ریشه های برابر است
فصل چهارم:
1:توابع بسل وخواص آن
فصل
1: دستگاه معادلات دیفرانسیل
فصل ششم: تبدیلات لاپلاس
1: تبدیل لاپلاس
2: خواص تبدیل لاپلاس
3: معکوس تبدیل لاپلاس
4: حل معادله دیفرانسیل به روش لاپلاس
5: تبدیل لاپلاس برخی توابع
ماهیت معادله دیفرانسیل وطبقه بندی آن
مقدمه: با مفهوم معادله یعنی رابطه ای که درآن تساوی باشد، آشنا هستیم. ساده ترین معادله یک مجهولی می باشد،
که بانماد نشان می دهیم. مثلا معادله یک مجهولی درجه اول و معادله یک مجهولی درجه دوم و
معادله یک مجهولی درجه سوم والی آخر
فرمت فایل:word(قابل ویرایش)،تعداد صفحات:28 مقدمه:اندازه کمان برحسب رادیان، دایره مثلثاتی:
دانشآموزان اولین چیزی را که در مطالعه توابع مثلثاتی باید بخاطر داشته باشند این است که شناسههای (متغیرهای) این توابع عبارت از اعداد حقیقی هستند. بررسی عباراتی نظیر sin1، cos15، (نه عبارات sin10، cos150،) ، cos (sin1) گاهی اوقات به نظر دانشجویان دورههای پیشدانگاهی مشکل میرسد.با ملاحظه توابع کمانی مفهوم تابع مثلثاتی نیز تعمیم داده میشود. در این بررسی دانشآموزان با کمانیهایی مواجه خواهند شد که اندازه آنها ممکن است بر حسب هر عددی از درجات هم منفی و هم مثبت بیان شود. مرحله اساسی بعدی عبارت از این است که اندازه درجه (اندازه شصت قسمتی) به اندازه رادیان که اندازهای معمولیتر است تبدیل میشود. در حقیقت تقسیم یک دور دایره به 360 قسمت (درجه) یک روش سنتی است. اندازه زاویهها برحسب رادیان بر اندازه طول کمانهای دایره وابسته است. در اینجا واحد اندازهگیری یک رادیان است که عبارت از اندازه یک زاویه مرکزی است. این زاویه به کمانی نگاه میکند که طول آن برابر شعاع همان دایره است. بدین ترتیب اندازه یک زاویه بر حسب رادیان عبارت از نسبت طول کمان مقابل به زاویه بر شعاع دایرهای است که زاویه مطروحه در آن یک زاویه مرکزی است. اندازه زاویه برحسب رادیان را اندازه دوار زاویه نیز میگویند. از آنجا که محیط دایرهای به شعاع واحد برابر است از اینرو طول کمان برابر رادیان خواهد بود. در نتیجه برابر رادیان خواهد شد.
چکیده
در این مقاله، حل دستگاه معادلات خطی منفرد مورد بررسی قرار گرفته است. ما نشان دادهایم هر دستگاه معادلات خطی منفرد با یک دستگاه معادلات خطی فرومعین هم ارز است. با ارایه مثال های عددی، نیز نشان داده شده است که جواب مینیمال به دست آمده برای دستگاه معادلات خطی فرومعین ...